

Modulhandbuch Bachelor Künstliche Intelligenz

Fakultät Angewandte Informatik Prüfungsordnung 01.10.2025 Stand: 20.11.2025 09:33

Inhaltsverzeichnis

KI-01 Mathematik 1	4
KI-02 Programmierung 1	7
KI-03 Grundlagen Informatik	11
KI-04 Betriebssysteme und Netzwerke	14
KI-05 Einführung in die Künstliche Intelligenz	17
KI-06 Schlüsselqualifikation 1	20
KI-07 Mathematik 2	26
KI-08 Programmierung 2	29
KI-09 Algorithmen und Datenstrukturen	32
KI-10 Internettechnologien	35
KI-11 Computational Logic	38
KI-12 Schlüsselqualifikation 2	41
KI-13 Datenbanken	46
KI-14 Stochastik	49
KI-15 Projektmanagement	55
KI-16 Assistenzsysteme	59
KI-17 KI-Programmierung	62
KI-18 Schlüsselqualifikation 3 (Technikethik und Nachhaltigkeit, wissens	
Arbeiten)	
KI-19 Sprachverarbeitung	
KI-20 Human Factors und Mensch-Maschine Interaktion	
KI-21 Maschinelles Lernen	
KI-22 Bildverstehen	
KI-23 Software Engineering	
KI-24 Schlüsselqualifikation 4 (Compliance, Datenschutz, IT-Recht)	
KI-25 Praxismodul	
KI-26 Seminar Aktuelle Themen der KI	
KI-27 Autonome Robotik	
KI-28 KI-Projekt	
KI-29 Deep Learning/Big Data	
KI-30 FWP1	111
KI-31 Schlüsselqualifikation 5 (Team-Entwicklung und interkulturelle	
KI-31 Schlüsselqualifikation 5 (Team-Entwicklung und interkulturelle Kommunikation, Unternehmensgründung) KI-32 FWP2	113

KI-33	FWP3	122
KI-34	FWP 4	124
KI-35	Bachelormodul	126

KI-01 Mathematik 1

Modul Nr.	KI-01
Modulverantwortliche/r	Prof. Dr. Michael Drexl
Kursnummer und Kursname	KI-01 Mathematik 1
Lehrende	Prof. Dr. Michael Drexl
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 45 Stunden Selbststudium: 90 Stunden Virtueller Anteil: 15 Stunden Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Studierende verstehen und kommunizieren die wichtigsten Konzepte der Mathematik. Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

Studierende verstehen grundlegende mathematischen Begriffe und Beweismethoden.

Sozialkompetenz

Studierende kommunizieren, argumentieren und kritisieren klar, logisch und konstruktiv, und tragen zu teamorientierten, evidenzbasierten Problemlösungsprozessen in der Gruppe bei.

Methodenkompetenz

Studierende modellieren praktische Fragestellungen mathematisch und wählen geeignete Methoden und Techniken aus, um diese Fragen zu beantworten.

Persönliche Kompetenz

Studierende verstehen komplexe theoretische Konzepte und wenden diese in der Praxis an.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist ein grundlegender Baustein des KI-Programms. Es ist eine Voraussetzung für Mathematik 2 und seine Inhalte werden in Statistik, maschinellem Lernen, Deep Learning und vielen anderen Modulen des Programms verwendet.

Zugangs- bzw. empfohlene Voraussetzungen

Keine

Inhalt

- Diskrete Mathematik
 - Logik
 - Mengen und Funktionen
 - Natürliche Zahlen und Induktion
 - Rekursive Datentypen und strukturelle Induktion
- Analysis
 - Funktionen einer reellen Variablen
 - Folgen
 - Reihen
 - Stetigkeit
 - Differenzierbarkeit
 - Anwendungen der Differenzierbarkeit
 - Das unbestimmte Integral
 - Bestimmtes Integral und Anwendungen

Lehr- und Lernmethoden

- Interaktive Vorlesungen und Übungseinheiten
- Praktische Erfahrungen mit symbolischen Rechenprogrammen (z.B. sympy)

Empfohlene Literaturliste

- Mathematik für Hochschule und duales Studium, Guido Walz, 2020
- Mathematik, Arens et al., 2022

KI-02 Programmierung 1

Modul Nr.	KI-02
Modulverantwortliche/r	Prof. Dr. Andreas Berl
Kursnummer und Kursname	KI-02 Programmierung 1
Lehrende	Prof. Dr. Andreas Berl
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Prüfungsarten	ÜbL, schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verfügen über grundlegendes allgemeines Wissen und grundlegendes Fachwissen im Bereich der Programmierung. Der Fokus liegt noch stark auf imperativer Programmierung, aber es werden auch erste objektorientierte Konzepte vermittelt. Die Studierenden sind in der Lage das Wissen praktisch anzuwenden und einfache bis mittelschwere Probleme zu lösen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernziele erreicht:

Fachkompetenz

Die Studierenden verstehen die Konzepte der modularen Gestaltung von Software.

Sozialkompetenz

Im Rahmen der Vorlesungen finden Programmierübungen statt. Die Studierenden sind damit in der Lage, die Inhalte von Programmen ihrer Kollegen zu verstehen, zu kritisieren und durch eigene Programme zu komplementieren. Sie sind in der Lage, Programme in einer Form zu erstellen, die eine Kooperation im Team zulässt.

Methodenkompetenz

Die Studierenden haben die Fähigkeit Programme unter Einsatz einer modernen objektorientierten Programmier-Plattform zu erstellen.

Persönliche Kompetenz

Die Studierenden können eigene softwaretechnische Ideen umsetzten und gegenüber konkurrierenden Ansätzen verteidigen.

Verwendbarkeit in diesem und in anderen Studiengängen

Grundlegende Einführung in die Programmierung

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

Teil 1: Schnelleinstieg in die Imperative Programmierung

- Überblick
 - Hallo Welt
 - Variablen, Abbildung im Arbeitsspeicher
 - Datentypen
 - Operatoren
- Kontrollstrukturen
 - Verzweigungen
 - Schleifen
- Programmierung
 - Programmiersprachen, Maschinensprache vs. Hochsprachen
 - Compiler
 - Programmerstellung
 - Compilerfehler vs. Laufzeitfehler
- Funktionen und Methoden
 - Rückgabewert, Name und Parameterliste
 - Rekursion
- Arrays
- Darstellung von Algorithmen

Teil 2: Objektorientierte Programmierung

- Abstraktion
 - Klassen und Objekte
 - Instanzvariablen, Klassenvariablen, lokale Variablen
 - Methoden und Überladung
 - Konstruktoren
- Datentypen und Operatoren
 - Primitive Datentypen
 - Boolsche Operatoren
 - Bitweise Operatoren
 - Referenzdatentypen
 - Zuweisung
 - Object
 - Operatoren
 - Unterschiede zwischen Datentypen
 - Zuweisung, Kopie, Vergleiche
 - Parameterübergabe
 - Cast
 - Spezielle Referenzdatentypen
 - String, Array
 - Wrapper, Enum
- Kapselung
 - Abstrakte Datentypen
 - Geheimnisprinzip und Modularisierung
 - Modifikatoren
 - JavaDoc
 - Packages
- Vererbung
 - Überblick Vererbung in Java
 - Polymorphismus und Dynamische Bindung

Teil 3: Weitere grundlegende Konzepte

- Zeichen, Bits und große Zahlen
 - Zeichen und Zeichenketten
 - Ein- und Ausgaben auf der Kommandozeile
 - Anwendung von Bitoperationen
 - Kleine und Große Zahlen
 - Die Klasse Math und Zufallszahlen
- Exceptions Fehlersuche und Testen
 - Exceptions
 - Fehler und Fehlersuche
 - Testen von Java Programmen
 - Junit
 - Test Driven Development

Lehr- und Lernmethoden

- Vorlesung mit PowerPoint
- Praktikum mit vielen Übungsaufgaben
- Gruppenarbeit
- Übungen, einschließlich Rechnerübungen (mit Leistungsnachweis)

Besonderes

keine

Empfohlene Literaturliste

Java-Programmierung: Das Handbuch zu Java 8

Guido Krüger, Heiko Hansen

O'Reilly Verlag Köln

8. Auflage 2014

ISBN 978-3-95561-514-7

Handbuch der Java-Programmierung

Guido Krüger, Heiko Hansen

7. Auflage 2011

HTML-Ausgabe 7.0.0 · © 1998, 2011

http://www.javabuch.de/download.html

Java ist auch eine Insel: Einführung, Ausbildung, Praxis

Christian Ullenboom

Rheinwerk Computing

16. Auflage 2021

ISBN 978-3-8362-8745-6

Java ist auch eine Insel: Einführung, Ausbildung, Praxis

Christian Ullenboom

Rheinwerk Computing

15. Auflage 2019

http://openbook.rheinwerk-verlag.de/javainsel

KI-03 Grundlagen Informatik

Modul Nr.	KI-03
Modulverantwortliche/r	Prof. Dr. Thorsten Matje
Kursnummer und Kursname	KI-03 Grundlagen Informatik
Lehrende	Prof. Dr. Thorsten Matje
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	ÜbL, schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verfügen über grundlegendes allgemeines Wissen und grundlegendes Fachwissen im Bereichen Informatik.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Kenntnis und Verständnis von wesentlichen Grundlagen der Informatik, deren Konzepten und Methoden
- Fachliche Kompetenz diese Grundlagen selbständig nachzuvollziehen und an Beispielen anzuwenden

Methodenkompetenz

- Syntax von symbolischen Ausdrücken formal beschreiben
- Reguläre Ausdrücke mit endlichen Automaten implementieren

Persönliche Kompetenz

- Studierende formulieren eigenständig logisch stichhaltige Argumente
- Studierende finden die Lücken in fehlerhaften Argumenten

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist Grundlage für die weiteren Informatik-Fächer. Es kann in anderen Informatik-Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

- 1 Einführung
 - Information
 - Algorithmus
- 2 Logik
 - Logische Verknüpfungen/Operatoren
 - Normalformen
- 3 Zahlensysteme
 - Arithmetik und Gleitkommazahlen
- 4 Codierung
 - ASCII-Code
 - Unicode
 - UTF
 - Fehlererkennung (Hamming-Code)
 - Komprimierung (Huffman-Code)
- 5 Entropie
- 6 Prädikatenlogik
- 7 Automaten
 - Endliche deterministische Automaten
 - Umsetzung ins Programm
- 8 Formale Sprachen
 - Reguläre Ausdrücke
 - Backus-Naur-Form (BNF)
 - Erweiterte Backus-Naur-Form (EBNF)
- 9 Graphentheorie
 - Teilgraphenprobleme

- Wegeprobleme
- Färbung
- Darstellung in einer Programmiersprache

Lehr- und Lernmethoden

Lehre im JITT-Format (Just-in-Time-Teaching), also Abbildung der Vorlesung durch Lehrvideos sowie verlinkte Literatur.

In der Präsenz werden die gelernten Inhalte mit Übungsaufgaben vertieft und überprüft.

Empfohlene Literaturliste

- Küppers, Bastian: Einführung in die Informatik: theoretische und praktische Grundlagen Buch
- Schmidt, Jochen: Grundkurs Informatik Das Übungsbuch: 163 Aufgaben mit Lösungen
- Berghammer, Rudolf: Mathematik f
 ür die Informatik: grundlegende Begriffe,
 Strukturen und ihre Anwendung Buch
- Deininger, Marcus: Brückenkurs Informatik: was Sie vor Vorlesungsbeginn wissen sollten Buch
- Herold, Helmut: Grundlagen der Informatik Buch
- Socher, Rolf: Theoretische Grundlagen der Informatik: mit 31 Tabellen, 36 Beispielen und 75 Aufgaben mit Lösungen Buch
- Schulz, André: Grundlagen der theoretischen Informatik

KI-04 Betriebssysteme und Netzwerke

Modul Nr.	KI-04
Modulverantwortliche/r	Prof. Dr. Peter Faber
Kursnummer und Kursname	KI-04 Betriebssysteme und Netzwerke
Lehrende	Prof. Dr. Peter Faber
	Prof. Dr. Andreas Kassler
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben folgende fachliche Kompetenzen:

Teil Betriebssysteme

Die Studierenden erhalten Einblick in die Bedeutung von Betriebssystemen als zentrale Grundlage für die Informationsverarbeitung in Unternehmen. Für die heutigen Ausprägungen von Betriebssystemen bauen sie Verständnis auf. Nach Absolvieren des Teilmoduls Betriebssysteme haben die Studierenden folgende Lernziele erreicht:

- Die Studierenden erlangen Kenntnis von Konzepten und Technologien, die für den Aufbau von Betriebssystemen notwendig sind und Wissen über den modularen Aufbau und die Funktionsweise von Betriebssystemen.

- Die Studierenden erwerben Wissen und Fertigkeiten über die Konfiguration, die Administration und die sichere Anwendung von Betriebssystemen anhand von kommerziellen Betriebssystemen.
- Die Studierenden ordnen und bewerten moderne Betriebsformen von Rechenzentren, wie z. B. Virtualisierung oder Cloud Computing im Kontext der Betriebssysteme.
- Die Studierende erhalten einen Einblick in die theoretischen Grundlagen eines Linuxsystems sowie einen Überblick über die wichtigsten Shellbefehle.
- Die Studierenden installieren und administrieren einen Linuxserver.

Teil Netzwerke

- Die Studierenden kennen die Bedeutung von Schichtenmodellen und die Aufgaben und Funktionen der Schichten des ISO/OSI-Modells und können die wichtigsten Dienstvertreter jeder Schicht erläutern.
- Die Studierenden k\u00f6nnen die Konzepte von Anwendungsprotokollen wie HTTP und SMTP wiedergeben und ihre Funktionsweise z.B. mit Sequenzdiagrammen nachvollziehen.
- Die Studierenden sind in der Lage einfache Internetanwendungen unter Zuhilfenahme von Sockets zu programmieren.
- Die Studierenden können Netzwerkprobleme mit geeigneten Tools analysieren und diagnostizieren.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist Grundlage für die weiteren Informatik-Fächer. Anrechenbar für das gleichnamiges Pflichtfach im Ba. Cyber Security.

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

Teil Betriebssysteme

Theoretische Inhalte

- Rechtemanagement (Authentifizierung, Authorisierung)
- Prozesse & Threads, Inter-Prozess Kommunikation
- Deadlocks, Mutex-Verfahren
- Peripherie / Ein-/Ausgabe
- Betriebssystem API, Userspace / Kernelspace

Praktische Inhalte

- Umgang mit Linux / Unix / POSIX
- Umgang mit Shells graphisch und textbasiert (insbesondere praktischer Umgang mit der Kommandozeile)
- Nutzung von Systemvirtualisierung (z.B.: Hypervisors, VirtualBox, XEN, Docker, ...)
- Verwendung von Systemcalls

Teil Netzwerke

Theoretische Inhalte

- Schichtenmodell: OSI
- Netzwerktopologien (Bus, Baum, Stern, teil-/vollvermascht)
- Anwendungsschicht: HTTP, SMTP & IMAP, DNS
- Transportschicht: Sockets, UDP, TCP
- Ausblick auf die Netzwerkschicht: IPv4/v6

Praktische Inhalte

- Verwendung von Werkzeugen und Techniken zur Netzwerkanalyse und konfiguration (z.B. Ping, Traceroute, PuTTY/telnet, nslookup, ...)
- Verwendung von Browser Debugging Tools (Netzwerkkonsole, ...)
- Textbasierte Anwendungsprotokolle verstehen und umsetzen (z.B. HTTP Interaktionen)

Lehr- und Lernmethoden

Seminaristischer Unterricht mit praktischen Übungen

Empfohlene Literaturliste

Teil Betriebssysteme

- Andrew S. Tanenbaum, Herbert Bos; Modern Operating Systems; Prentice Hall, 4th ed., 2014
- Evi Nemeth, Garth Snyder, Trent R. Hein et ak.; Unix and Linux System Administration Handbook, Addison-Wesley, 5th ed., 2018
- Micha Gorelick & Ian Ozsvald; High Performance Python; O'Reilly, 2014

Teil Netzwerke

- James F. Kurose, Keith F. Ross; Computer Networking: A Top-Down Approach; Pearson, 7th ed., 2017
- Andrew S. Tanenbaum, David J. Wetherall; Computer Networks; Pearson, 5th ed., 2014

KI-05 Einführung in die Künstliche Intelligenz

Modul Nr.	KI-05
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-05 Einführung in die Künstliche Intelligenz
Lehrende	Prof. Dr. Robert Hable
	Prof. Dr. Markus Mayer
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben die für das Entwickeln von KI-Systemen erforderlichen, ersten Grundkenntnisse aus Wissensrepräsentation, Schlussfolgern, und Maschinellem Lernen. Ferner wird ein Überblick über die informatikgeprägte Denk- und Arbeitsmethoden der Künstlichen Intelligenz anhand eines historischen Überblicks und Philosophiekonzepten geschaffen.

Die Studierenden erwerben formale Kompetenz, so dass erste Probleme formal beschrieben werden können. Sie wenden ihre KI-Kenntnisse bei der Entwicklung kleiner KI-Lösungskonzepte erfolgreich an.

Die Studierenden sind in der Lage geeignete KI- Werkzeuge zur Lösung der Aufgabenstellungen grob einzuschätzen. Durch Gruppenarbeit lernen die Studierenden Kooperationsfähigkeit.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

Die Studierenden verfügen über Grundkenntnisse der KI Modellierung und des Maschinellen Lernens.

Sozialkompetenz

Die Studierenden verfügen über einen Einblick in die Lösung von Problemen durch Gruppenarbeit und Teamarbeit.

Methodenkompetenz

Die Studierenden verfügen über Grundlagen-Kenntnisse von KI-Methoden zur Bearbeitung praktischer Aufgaben, wie Wissensrepräsentation, Schlussfolgern und Maschinellem Lernen als Basis zum Verständnis von Anwendungslösungen.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist Grundlage für die weiteren KI-Fächer. Das Modul kann als Modul "Wissensbasierte Systeme" im Ba. WI oder als FWP-Fach in anderen Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

Teil I

- 1 Definitionen von KI
- 2 Die Philosophie von KI
 - 2.1 Turing Test
 - 2.2 Chinese Room
 - 2.3 Die Dimensionen von Intelligenz
 - 2.4 Das KI Standardmodel
- 3 Die Geschichte der KI
- 4 Zustand-Aktions Systeme anhand eines Reinforcement Learning Beispiels
- 5 Wissenrepräsentation und Schlussfolgern anhand eines Beispiels (Prolog)
- 6 KI & Ethik

Teil II

1 Einführung in Maschinelles Lernen

- 1.1 Data Mining Projekte in Unternehmen
- 1.2 Was ist Maschinelles Lernen?
- 1.3 Datenanalyse-Software R
- 1.4 Einlesen von Daten in R
- 2 Supervised Learning (I): parameterbasierte Verfahren
- 2.1 Einführung
- 2.2 Regression
- 2.2.1 Einfache lineare Regression
- 2.2.2 Multiple lineare Regression
- 2.3 (Binäre) Klassifikation: Logistische Regression
- 3 Supervised Learning (II): Nichtparametrische Verfahren
- 3.1 Einführung
- 3.2 Trainings- und Testdatensatz
- 3.3 Entscheidungsbäume
- 3.4 Neuronale Netze
- 4 Bayes Netze
- 4.1 Bedingte Wahrscheinlichkeiten
- 4.2 Repräsentation von Unsicherheit in Bayes Netzen
- 4.3 Multiplikationssatz und Inferenz im Bayes Netz

Lehr- und Lernmethoden

Skript, Folien, Geleitete Diskussion, Hand-on Aufgaben, Live-Programmierung

Empfohlene Literaturliste

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2017): An Introduction to Statistical Learning: with Applications in R. Springer, New York.

Görz, G., Schneeberger, J. & Schmid, U., 2014. *Handbuch der Künstlichen Intelligenz.* 5. Hrsg. München: Oldenbourg Verlag München.

Russel Stuart, Norvig Peter: Artificial Intelligence - A Modern Approach. 4. Auflage, Pearson Education Limited, 2022

Roger Penrose: The emperors new mind. Oxford University Press, 1989

KI-06 Schlüsselqualifikation 1

Modul Nr.	KI-06
Modulverantwortliche/r	Prof. Dr. Roland Zink
Kursnummer und Kursname	KI-06 Schlüsselqualifikation 1
Lehrende	Prof. Dr. Thomas Geiß Prof. Dr. Roland Zink
Semester	1
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Prüfungsarten	Prüfungsart des gewählten Moduls
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Der Umstieg von der Schule zu Hochschule stellt viele Studierende gleich zu Beginn ihres Studiums vor Herausforderungen. Weg von vorgegebenen Stundenplänen und Lehrplanbezug, hin zu Eigen- und Selbstständigkeit sowie Eigenverantwortung. Das Modul Schlüsselqualifikation 1 soll auf diese Herausforderungen insbesondere auch mit Blick auf die Digitalisierung (neue Formen der Wissensgenerierung und -vermittlung und des Wissensmanagements) und den wirtschaftlichen Bezug (Betriebspraktikum im 5. Semester) vorbereiten. Die Lerninhalte des Moduls setzen sich folglich aus den beiden Fächern "Betriebswirtschaft" und "Medienkompetenz und Selbstorganisation" zusammen. Betriebswirtschaft

Im Fach Betriebswirtschaft setzen sich die Studierenden insbesondere mit der Allgemeinen BWL, der Kosten- und Leistungsrechnung sowie dem Personalmanagement auseinander. Obwohl die Studierenden einen technischen bzw. informatikorientierten Studiengang belegen, soll durch das angeeignete betriebswirtschaftliche Wissen der Berufseinstieg erleichtert werden. Durch die Verbreiterung der Wissensbasis bei den Studierenden sollen suboptimale Entscheidungen in Unternehmen vermieden werden.

Fachkompetenz Betriebswirtschaft

- Die Studierenden lernen die betrieblichen Funktionalbereiche im Überblick und ausgewählte Konzepte der Unternehmensführung/Strategieentwicklung kennen.
- Die Studierenden kennen und verstehen die Grundsätze und Methoden einer systematischen Entscheidungsfindung.
- Die Studierenden kennen die Zwecke der Kosten- und Leistungsrechnung (KLR) und den Aufbau eines KLR-Systems.
- Sie sind mit wichtigen Instrumenten der KLR, der Kostenstellen- und Kostenträgerrechnung sowie der kurzfristigen Erfolgsrechnung vertraut.
- Sie werden befähigt, kostenstellen- und auftragsbezogene Soll-IstVergleiche (SIV) durchzuführen und zu bewerten.
- Sie können die Teilkostenrechnung in Form der Deckungsbeitragsrechnung anwenden.
- Sie werden befähigt, Entscheidungsrechnungen auf Basis der KLR durchzuführen.

Medienkompetenz und Selbstorganisation

Das Fach Medienkompetenz und Selbstorganisation gliedert sich inhaltlich in drei Blöcke. Der erste Block beinhaltet eine gute und dem Studienzweck angepasste Selbstorganisation mit der Einführung in die neue Herausforderung des Studiums, dem Zeitmanagement und der Lernumgebung der THD. Den zweiten Block bildet Medienkompetenz, indem insbesondere Aspekte der digitalen Transformation unserer Gesellschaft aufgegriffen werden. Bezugnehmend auf das Medienkompetenzraster NRW (2024) mit seinen sechs Bausteinen: 1) Bedienen und Anwenden, 2) Informieren und Recherchieren, 3) Kommunizieren und Kooperieren, 4) Produzieren und Präsentieren, 5) Analysieren und Reflektieren und 6) Problemlösen und Modellieren werden die im schulischen Kontext erworbenen Kompetenzen weiter ausgebaut, um für studentisches und wissenschaftliches Arbeiten vorbereitet zu sein. Mit Fokus auf Studium und Wissenschaft werden u.a. diese Inhalte thematisiert: Umgang mit wissenschaftlichen Statistiken und Literatur, Fake News, Plagiate, Datenschutz sowie Urheberrechte. Der dritte Block leitet auf wissenschaftliches Arbeiten über, welches in einem weiteren Schlüsselqualifikationsmodul im Laufe des Studiums vertieft wird. Inhaltlich werden Formen der Wissenschaftskommunikation sowie eine Hinführung zu Guter Wissenschaftlicher Praxis (GWP) thematisiert. Zudem werden Aspekte des wissenschaftlichen Umgangs mit Daten angesprochen und Inhalte zu Datenerhebung, -auswertung und -visualisierung sowie Forschungsdaten- und Wissensmanagement

vermittelt. Dazu zählt auch der verantwortungsvolle und transparente Einsatz generativer KI.

Fachkompetenz Medienkompetenz und Selbstorganisation

- Die Studierenden kennen verschiedene digitale Medien zur Lernorganisation (insb. Das Angebot der THD: iLearn, Nextcloud, MyGIT, Email, usw.) und können diese anwenden.
- Die Studierenden werden befähig, sowohl analoge als auch digitale Lehrund Lerninhalte gezielt für ihr Studium auszuwählen, zu nutzen und zu reflektieren.
- Die Studierenden werden befähig, mit digitalen Medien kompetent und zielgerichtet für wissenschaftliche Zwecke umzugehen.
- Die Studierenden können ihr Studium zeitlich wie inhaltlich organisieren und die große Informationsfülle zielgerichtet bearbeiten.
- Die Studierenden kennen die Grundlagen zum Recherchieren nach und zur Arbeit mit wissenschaftlichen Quellen (v.a. Statistiken und Literatur) und können studiengangsorientiert diese Kenntnisse zielgerichtet anwenden.
- Die Studierenden erhalten einen Einblick in die verschiedenen Formen der Wissenschaftskommunikation und kennen Regeln des wissenschaftlichen Arbeitens bzw. Folgen wissenschaftlichen Fehlverhaltens.
- Die Studierenden wissen, was Daten, Information und Wissen sind und lernen den Umgang mit Forschungsdaten bzw. Daten im Studium.

Beide Fächer

Methodenkompetenz

- Die Studierenden werden zu einem transparenz-, struktur- und entscheidungsorientierten Arbeiten befähigt.
- Die Studierenden werden zu selbstständigen Arbeiten befähigt und ihnen ist Notwendigkeit des selbständigen Arbeitens bewusst.
- Die Studierenden erwerben Kompetenzen beim Umgang mit digitalen Medien, wissenschaftlichen Daten und generativer KI.
- Die Studierenden erlernen Strategien der Wissensaneignung mit Blended Learning Verfahren.

Persönliche Kompetenz

 Die Studierenden erlernen durch Übungen selbstständiges und problem-, lösungs- bzw. handlungsorientiertes Arbeiten.

Sozialkompetenz

- Die Studierenden trainieren in Übungen Partner- und Teamarbeit.
- Die Studierenden erlernen eigenverantwortliches Arbeiten.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul legt Grundlagen für das Studium im Allgemeinen und ist in allen Bachelorstudiengängen der Fakultät Angewandte Informatik integriert. Folglich beziehen sich die Ausführungen zur Verwendbarkeit des Moduls auch auf **alle** Bachelorstudiengänge der Fakultät Angewandten Informatik

Folgenden weiterführenden Modul sind darüber hinaus explizit namentlich zu nennen:

2. oder 3. Semester: Schlüsselqualifikation 2 oder 3: Technikethik und Nachhaltigkeit und Wissenschaftliches Arbeiten

5. Semester: Praxismodul

7. Semester: Bachelor-Modul (Bachelorarbeit)

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

Betriebswirtschaft

- Das Unternehmen im Überblick
 - Unternehmensführung und Unternehmenspolitik
 - Vision, Ziele, Strategien
 - Konstitutive Unternehmensentscheidungen
 - Produktionsfaktoren
 - Betriebliche Funktionen
 - Überblick über die Ansätze der Entscheidungstheorie
 - Zwecke der KLR u. Kostenzuordnungsprinzipien
 - Systeme der KLR
 - Spezifische kostenrechnerische Inhalte in den Bereichen KI und CS
 - Die KLR auf der Vollkostenbasis
 - Kostenartenrechnung
 - Kostenstellenrechnung
 - Kostenträgerrechnung
 - Die KLR auf Teilkostenbasis (Deckungsbeitragsrechnung)
 - Die kurzfristige Erfolgsrechnung
 - Entscheidungsorientierte KLR inkl. des Grundsatzes der relevanten Kosten

Medienkompetenz und Selbstorganisation

- Neue Herausforderung Studium: kritisch und reflektiert sein
 - Selbstorganisation und Zeitmanagement
 - Die Lernumgebung THD und Studium gestalten

- Medienkompetenz: Digitale Medien im studentischen Lernkontext
- Statistiken und Literatur f
 ür wissenschaftliche Zwecke
- Fake News, Pagiate sowie Urheber- und Nutzungsrechte im wissenschaftlichen Kontext
- Wissenschaftskommunikation: Digitale Medien in der Wissenschaft und Kommunikation
- Daten, Information und Wissen
- Wissenschaftliche Daten auswerten und visualisieren
- Forschungsdatenmanagement
- Wissensmanagement
- Generative KI in der Wissenschaft

Lehr- und Lernmethoden

- Seminaristischer Unterricht mit Gruppen- und Partnerarbeit
 - Projektarbeit
 - Blended Learning über Online-Module

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt

Empfohlene Literaturliste

Betriebswirtschaft

- Däumler K., Grabe J. (2013): Kostenrechnung 1 ? Grundlagen, 11. Aufl., NWB-Verlag, Herne.
- Dörsam, P. (2013): Grundlagen der Entscheidungstheorie anschaulich dargestellt, 6. Auflage, PD-Verlag, Heidenau.
- Friedl G., Hofmann Ch., Pedell B. (2017): Kostenrechnung: Eine entscheidungsorientierte Einführung, 3. Aufl., Vahlen Verlag, München.
- Jorasz W., Baltzer B. (2019): Grundlagen der Kosten- und Leistungsrechnung: Lehrbuch mit Aufgaben und Lösungen, SchäfferPoeschel Verlag, Stuttgart.
- Wöhe, G. (2016), Einführung in die allgemeine Betriebswirtschaftslehre, 26. Auflage, Vahlen, München.

Medienkompetenz und Selbstorganisation

- Gapski, H., Oberele, M. & Staufer, W. (Hrsg.) (2017):
 Medienkompetenz. Herausforderung für Politik, politische Bildung und Medienbildung. Bonn.
 - Gerstmann, M. (2021): Wissenschaftliches Arbeiten. Stuttgart.
 - Gimpel, H., Hall, K., Decker, S., Eymann, T., Lämmermann, L., Mädche, A., Röglinger, R., Ruiner, C., Schoch, M., Schoop, M., Urbach, N., Vandirk, S. (2023): Unlocking the Power of Generative AI Models and Systems such as GPT-4 and ChatGPT for Higher Education: A Guide for Students and Lecturers. Hohenheim. Online verfügbar unter https://opus.uni-hohenheim.de/volltexte/2023/2146/pdf/dp_2023_02_online.pdf.
 - Lehner, F. (2021): Wissensmanagement. Grundlagen, Methoden und technische Unterstützung. 7. Auflage. München.
 - Voss, R. (2014): Wissenschaftliches Arbeiten. 3. Auflage. Wien.
 - (Zusätzlich werden Internetdokumente und Leitfäden verwendet!)

KI-07 Mathematik 2

Modul Nr.	KI-07
Modulverantwortliche/r	Prof. Dr. Michael Drexl
Kursnummer und Kursname	KI-07 Mathematik 2
Lehrende	Prof. Dr. Michael Drexl
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Studierende verstehen und kommunizieren die wichtigsten Konzepte der Mathematik. Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

Studierende verstehen grundlegende mathematischen Begriffe und Beweismethoden.

Sozialkompetenz

Studierende kommunizieren, argumentieren und kritisieren klar, logisch und konstruktiv, und tragen zu teamorientierten, evidenzbasierten Problemlösungsprozessen in der Gruppe bei.

Methodenkompetenz

Studierende modellieren praktische Fragestellungen mathematisch und wählen geeignete Methoden und Techniken aus, um diese Fragen zu beantworten.

Persönliche Kompetenz

Studierende verstehen komplexe theoretische Konzepte und wenden diese in der Praxis an.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist ein grundlegender Baustein des KI-Programms und seine Inhalte werden in Statistik, maschinellem Lernen, Deep Learning und vielen anderen Modulen des Programms verwendet.

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

Inhalt des Moduls Mathematik 1

Inhalt

- Komplexe Zahlen
 - Algebraische und trigonometrische Form
 - Komplexe Ebene, geometrische Bedeutung der algebraischen Operationen
 - Anwendungen in der Trigonometrie
 - Einheitswurzeln
 - Fundamentalsatz der Algebra
- Lineare Gleichungssysteme und Matrizen
 - Operationen mit Matrizen
 - Lineare Systeme
 - Elementare Zeilenumformungen, Reduzierte Zeilenstufenform
 - Determinanten
- Vektorräume
 - Axiomatische Definition und Beispiele
 - Lineare Abbildungen, Matrixdarstellung von linearen Abbildungen
 - Operationen mit linearen Abbildungen
- Matrixzerlegung
 - Eigenwerte und Eigenvektoren
 - Diagonalisieren, Schur-Zerlegung, SVD (Singulärwertzerlegung)
- Differenzierbarkeit in höherdimensionalen Räumen und Anwendungen
 - Totales Differential und partielle Ableitungen

- Gradient, Hesse-Matrix, Jakobische Matrix
- Lagrange-Multiplikatoren
- Iterative Methoden zur Optimierung
 - Methode des Steilster Abstiegs
 - Konvergenzanalyse unter Verwendung von Eigenvektoren und Eigenwerten

Lehr- und Lernmethoden

- Interaktive Vorlesungen und Übungseinheiten
- Praktische Erfahrungen mit symbolischen Rechenprogrammen (z.B. sympy)

Empfohlene Literaturliste

- Mathematik für Hochschule und duales Studium, Guido Walz, 2020
- Mathematik , Arens et al., 2022

KI-08 Programmierung 2

Modul Nr.	KI-08
Modulverantwortliche/r	Prof. Dr. Andreas Berl
Kursnummer und Kursname	KI-08 Programmierung 2
Lehrende	Prof. Dr. Andreas Berl
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	ÜbL, schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verfügen über sehr gute Kompetenzen zum selbständigen Entwurf, zur Implementierung und zum Testen von Java-Programmen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernziele erreicht:

Fachkompetenz

 Die Studierenden verstehen die Konzepte der modularen Gestaltung von Software. (2 - Verstehen)

Methodenkompetenz

 Die Studenten haben die F\u00e4higkeit Programme unter Einsatz einer modernen objektorientierten Programmier-Plattform zu erstellen. (3 -Anwenden)

Sozialkompetenz

 Im Rahmen der Vorlesungen finden Programmierübungen statt. Die Studierenden sind damit in der Lage, die Inhalte von Programmen ihrer Kollegen zu verstehen, zu kritisieren und durch eigene Programme zu komplementieren. Sie sind in der Lage, Programme in einer Form zu erstellen, die eine Kooperation im Team zulässt. (5 - Beurteilen)

Persönliche Kompetenz

- Die Studierenden können eigene softwaretechnische Ideen umsetzten und gegenüber konkurrierenden Ansätzen verteidigen. (6 - Erschaffen)

Verwendbarkeit in diesem und in anderen Studiengängen

Vertiefte Kenntnisse in objektorientierter Programmierung, speziell in der Sprache Java

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

Programmierung I

Inhalt

Teil 1: Vertiefung OOP und Modellierung mit UML

- Abstraktion und Kapselung
 - Wiederholung Datentypen, Syntax, Konventionen
 - Modellierung: UML-Diagramme
 - Geheimnisprinzip und Modularisierung
- Datentypen und Hilfsklassen
 - Primitive Datentypen und Referenzdatentypen
 - Die Klasse Object (z.B. equals, clone, toString, hashCode)
 - Wrappertypen und Enumerations
- Beziehungen
 - Beziehungen zwischen Klassen und UML-Modellierung
 - Vererbung mit extends
 - Polymorphismus und Dynamische Bindung
 - Abstrakte Klassen und Interfaces
 - Generics
 - Erweiterte Interfaces
 - Geschachtelte Typen und Lambda-Ausdrücke

Teil 2: Fortgeschrittene Java Programmierung

- Clean Code
 - Namen und Kommentare
 - Implementierung von Code
 - Stolperfallen
- Collections API
 - Listen, Array vs. ArrayList
 - Das Collection API mit seinen Interfaces
 - Set, Map, List
 - Anwenden von Collections
- Dateizugriffe und Ressourcenmanagement
 - Path, FileSystem, Paths, FileSystems, Files
 - RandomAccessFile, Logfiles, Tempfiles
- Ausblicke
 - Multithreading
 - Stream-API, Filter-Map-Reduce

Lehr- und Lernmethoden

- Vorlesung mit PowerPoint
- Praktikum mit vielen Übungsaufgaben
- Gruppenarbeit
- Übungen, einschließlich Rechnerübungen (mit Leistungsnachweis)

Besonderes

keine

Empfohlene Literaturliste

Java ist auch eine Insel: Einführung, Ausbildung, Praxis

Christian Ullenboom

Rheinwerk Computing 16. Auflage 2021

ISBN 978-3-8362-8745-6

Java ist auch eine Insel: Einführung, Ausbildung, Praxis

Christian Ullenboom Rheinwerk Computing 15. Auflage 2019

openbook.rheinwerk-verlag.de/javainsel

KI-09 Algorithmen und Datenstrukturen

Modul Nr.	KI-09
Modulverantwortliche/r	Prof. Dr. Patrick Glauner
Kursnummer und Kursname	KI-09 Algorithmen und Datenstrukturen
Lehrende	Prof. Dr. Patrick Glauner
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	ÜbL, schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ziel dieses Moduls ist es, eine Einführung in eine der wichtigsten Grundlagen eines Informatikstudiums zu geben: Algorithmen und Datenstrukturen. Eine Datenstruktur ermöglicht es einem Programmierer, Daten in konzeptionell handhabbare Zusammenhänge zu strukturieren. Ein Algorithmus ist eine endliche Folge von wohldefinierten, computer-implementierbaren Anweisungen, um eine Klasse von Problemen zu lösen oder eine Berechnung durchzuführen. Algorithmen arbeiten oft mit Datenstrukturen. Dieser Kurs bietet eine Reise durch die Informatik. Die Studierenden erwerben eine solide Grundlage davon, wie die wichtigsten Algorithmen und Datenstrukturen funktionieren. Sie lernen auch, wie man effiziente Algorithmen und Datenstrukturen entwirft.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden verstehen die Konzepte der gängigsten Algorithmen und Datenstrukturen. (2 - Verstehen)

Methodenkompetenz

- Die Studierenden haben die Fähigkeit, hochqualitative Programme unter Einsatz von Algorithmen und Datenstrukturen zu erstellen. (3 - Anwenden)

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene Algorithmen und Datenstrukturen umsetzen und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen. (6 -Erschaffen)

Sozialkompetenz

Im Rahmen der Lehrveranstaltung finden Programmierübungen statt.
 Die Studierenden sind damit auch in der Lage, Algorithmen und Datenstrukturen anderer Studierender zu verstehen, zu kritisieren und zu komplementieren. (5 - Beurteilen)

Verwendbarkeit in diesem und in anderen Studiengängen

Unter anderem:

- Software Engineering
- Assistenzsysteme
- Sprachverarbeitung
- Maschinelles Lernen
- Bildverstehen
- Deep Learning/Big Data

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

- Inhalt des ersten Semesters, insbesondere Programmierung 1
- Grundlagen Mathematik

Inhalt

- Einführung: Algorithmen-Definition, Klassifizierung von Algorithmen
- Graphen: Graphen-Definitionen, Anwendungen in der Informatik, Shortest Path, Lowest Cost, A*

- Komplexitätsanalyse: Zeitkomplexität, O-, Omega-, Theta-, o- und O-Tilde-Kalküle, pseudo-polynomielle Komplexität, Speicherkomplexität
- Listen: Arrays, dynamische Arrays/Listen, Amortisierung, Basisoperationen, Stacks, Warteschlangen, verkettete Listen
- Rekursion: Suche, Divide and Conquer, Rekurrenzgleichungen, Master Theorem, Backtracking, dynamische Programmierung
- Sortierung: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quicksort, untere Schranken
- Bäume: Binärbäume, Traversieren, fortgeschrittene Arten von Bäumen, Entscheidungsbäume
- Maps und Hash-Tabellen: Key-Value-Speicher, Hashing, Kollisionsbehandlung
- Ausgewählte Themen: schnelle Matrizenmultiplikation, Zufallszahlengenerierung, schnelle inverse Quadratwurzel, Primzahlen, Bloom-Filter, Union-Find, Median der Mediane, String-Matching
- Quantencomputing: Qubits, Quantengatter, Quantencomputer, Quantenalgorithmen

Lehr- und Lernmethoden

- Vorlesungen
- Diskussion von wissenschaftlichen Artikeln und aktuellen Nachrichten
- Übungen, einschließlich Rechnerübungen (Leistungsnachweis)

Empfohlene Literaturliste

- M. Goodrich, et al., " Data Structures and Algorithms in Python ", John Wiley & Sons. 2013.
- R. Sedgewick and K. Wayne, "Algorithms ", Addison Wesley, 4th edition, 2011.
- M. Sipser, "Introduction to the Theory of Computation ", Cengage Learning, 3rd edition, 2012.

KI-10 Internettechnologien

Modul Nr.	KI-10
Modulverantwortliche/r	Prof. Dr. Goetz Winterfeldt
Kursnummer und Kursname	KI-10 Internettechnologien
Lehrende	Prof. Dr. Goetz Winterfeldt
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 90 Stunden
	Virtueller Anteil: 30 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Fachkompetenzen

Studierende kennen Technologien, die sie bei der Gestaltung von Interaktiven Internetapplikationen nutzen können. Sie sind in der Lage diese effizient bei der Umsetzung von Projekten einzusetzen.

Die Studierenden gestalten Webseiten. Sie wissen wie man Seiten strukturiert und kennen grundlegende Sprachen um Webseiten zu gestalten (CSS, HTML, Java Script). Sie haben kleine JavaScript Programme geschrieben.Im Projekt setzten eine node.js Infrastruktur auf, integrieren einen Socketserver und realisieren Webkomponenten, um Inhalte an den Browser auszuliefern.

Methodenkompetenzen

Die Studierenden nutzen Kommandozeilen-Werkzeuge, um sich mit Servern zu verbinden und Daten auszutauschen. Sie nutzen Server und Client Technologien, um einfache Kommunikationen zwischen Systemen aufzubauen. Sie sind in der Lage integrierte Entwicklungsumgebungen zu nutzen.

Sozialkompetenzen

Basierend auf diesen Kenntnissen führen die Studierenden ein eigenes Projekt durch. Sie wenden dabei ihr Wissen über Webtechnologien an. Sie bewerten die Ergebnisse anderer Gruppen und werden selber mit ihrem Projekt bewertet. Dabei nutzen die Studierenden Standard-Werkzeuge (GIT, Visual Code, Command Line) der Webprogrammierung.

Persönliche Kompetenz

Nach Beendigung des Kurses können die Studierenden eigene Projekte durchführen und Internet (Web) Applikationen entwickeln. Im Kurs wird nicht auf Datenbanken und Netzwerktechnologien eingegangen, da diese Themen in anderen Vorlesungen verankert sind.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist Grundlage für die weiteren Informatik-Fächer und kann in anderen Studiengängen, wie Ba. Medientechnik, Ba. Interaktive Systeme oder Ba. Cyber Security verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

- Programmierung 1
- Betriebssysteme und Netzwerke

Inhalt

Das Modul setzt sich aus zwei Teilen zusammen:

Teil I Internettechnologien Grundlagen und einem Teil II Projektarbeit Internettechnologien Inhalt Teil 1

- (1) Werkzeuge und Installation
- (2) Gundlagen Client Server, Protokolle
- (3) Client Webtechnologien
- Html
- -CSS
- Java Script
- (4) Server Technologien

- (5) Propritäre Applikationen
- Sockets
- Datenformate
- Session Management

Inhalte Teil 2

Workshop: Setup Infrastruktur - Cloud based Services

Projekt: Realisierung einer Webapplikation

Lehr- und Lernmethoden

Vorlesung, Tutorials, Praktika. Im zweiten Kursteil wir ein Projekt erarbeitet. Die Infrastruktur wird im Rahmen der Vorlesung aufgesetzt.

Besonderes

Die Notenbildung teilt sich in Projektleistung und Prüfung. Die Projektleistung wird nach Schema bewertet. Zusätzlich gibt es eine schriftliche Prüfung, die das Grundverständnis abprüft.

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

- (1) Turorials und Grundlagen von Internet Technologien, https://www.w3schools.com/
- (2) Node.js das umfassende Handbuch, Sebastian Springer, 2021, Rheinwerk Computing, ISBN 978-3-8362-8765-4
- (3) HTML5 und CCS3 für Einsteiger: Der leichte Weg zur eigenen Webseite, Paul Fuchs, 2019
- (4) JQuery 3, Frank Bongers, Reihnwerk Comupting, ISBN 978-3-8362-5664-3
- (5) Responsive Web Design with HTML5 and CSS: Develop future-proof responsive websites using the latest HTML5 and CSS techniques, 3rd Edition, 2020, 978-1839211560

KI-11 Computational Logic

Modul Nr.	KI-11
Modulverantwortliche/r	Prof. Dr. Thomas Ewender
Kursnummer und Kursname	KI-11 Computational Logic
Lehrende	Prof. Dr. Thomas Ewender
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Prüfungsarten	schr. P. 90 Min.
Dauer der Modulprüfung	90 Min.
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden erwerben ein Verständnis und praktische Erfahrungen mit verschiedenen Systemen der Logik, die in Computerprogrammen der Künstlichen Intelligenz eingesetzt werden können. Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernziele erreicht:

Fachkompetenz

Die Studierenden verstehen die Bedeutung von Logik für intelligente Problemlösungen.

Sozialkompetenz

Logik ist allgegenwärtig im Verständnis aller Aspekte der täglichen Erfahrungen und der zwischenmenschlichen Kommunikation. Ein vertieftes Verständnis dieser

Zusammenhänge befähigt die Studierenden zu nachvollziehbaren und logischen Argumentationen.

Methodenkompetenz

Programmsysteme der Künstlichen Intelligenz verwenden verschiedene Arten von Logik mit unterschiedlicher Ausdrucksmächtigkeit. Die Studierenden können konkreter Anwendungsprobleme damit lösen.

Persönliche Kompetenz

Logik verbindet grundlegende theoretische Konzepte der Epistemologie mit einer allgegenwärtigen Verwendung in der Kommunikation unter Menschen. Die Studierenden vertiefen ihre Fähigkeiten mit theoretischen Konzepten umzugehen und mit praktischen Aufgabenstellungen zu verbinden.

Verwendbarkeit in diesem und in anderen Studiengängen

Logik und ihre Berechenbarkeit ist ein Grundlagenfach für alle Informatik Module und Studiengänge.

Das Modul ist Voraussetzung für alle aufbauenden Vorlesungen der Künstlichen Intelligenz.

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

KI-1 Mathematik 1

KI-3 Grundlagen der Informatik

Inhalt

Einführung in die formale Logik

- 1 Einführung in die Familie der Sprachen der Logik
- 2 Wichtige Grundbausteine und Konzepte der Logik
 - Namen
 - Atomare Aussagen
 - Prädikate
 - Funktionen
 - Beweise
- 3 Aussagenlogik
- 4 Prädikatenlogik
- 5 Übersetzung natürlichsprachlicher Sätze in Logik
- 6 Informelle Beweise
- 7 Formale Beweise

- 8 Mengenlehre
- 9 Klassiche Semantik für PL-1

Lehr- und Lernmethoden

- Seminaristischer Unterricht
- Praktische Übungen
- Interaktive Übungen unter Verwendung von Proof Checkern und interaktiver Auswertungsprogramme für logische Welten

Empfohlene Literaturliste

- Barwise, J und Etchemendy, J: Sprache, Beweis und Logik, 2 Bände, Mentis Verlag, 2005 und 2009

KI-12 Schlüsselqualifikation 2

Modul Nr.	KI-12
Modulverantwortliche/r	Tanja Mertadana
Kursnummer und Kursname	KI-12 Schlüsselqualifikation 2
Lehrende	Dozierende des ausgewählten Moduls
Semester	2
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 60 Stunden
	Gesamt: 120 Stunden
Prüfungsarten	Prüfungsart des gewählten Moduls
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Im Kurs festgelegt

Qualifikationsziele des Moduls

Das Modul Schlüsselqualifikation 3 - Fachsprache Englisch zielt darauf ab, den Studierenden spezialisierte Sprachkenntnisse zu vermitteln, die für eine selbständige bzw. kompetente Tätigkeit in einem globalisierten Bereich der Künstlichen Intelligenz notwendig sind. Das Ziel dabei ist es, die Beziehung der Studierenden zur englischen Sprache im wissenschaftlich-technischen Bereich zu vertiefen und verfeinern, damit sie die Sprache effektiv und effizient als praktisches Kommunikationsmittel einsetzen können. Internationale Studierende können wahlweise an Deutschkursen auf C1-Niveau teilnehmen.

Fachsprache Englisch

Im Modul werden die vier Grundfertigkeiten - Hören, Lesen, Sprechen und Schreiben - trainiert. Studierende erweitern ihren fachspezifischen Wortschatz und vertiefen ihre Kenntnisse in Bezug auf die sprachlichen Strukturen.

Das Hauptaugenmerk des Moduls ist die Optimierung der Sprachgewandtheit und die Verbesserung der Fähigkeit auf Englisch zu kommunizieren, um anspruchsvolle, längere Texte und Gespräche im fachlichen Kontext besser zu verstehen. Durch aufgabenbezogene Sprech-, Hör-, Lese- und Schreibaktivitäten optimieren Studierende ihre kommunikativen Fähigkeiten und erweitern ihr Ausdrucksvermögen. Dies ermöglicht ihnen sowohl das Teilnehmen an fachlichen Diskussionen, das Arbeiten im Team, das selbständige bzw. kompetente Erstellen relevanter Dokumente, und das erfolgreiche Präsentieren auf Englisch.

Nach Abschluss des Moduls haben die Studierenden die folgenden Lernziele erreicht: Fachkompetenz

Auf dem Niveau Englisch B2/C1 sollten die Studierenden in der Lage sein:

- Die englische Sprache auf einem sicheren Sprachniveau (B2/C1, GER) zu beherrschen und im Bereich Künstlicher Intelligenz auch Fachdiskussionen und Verhandlungen zu verstehen und selbstwirksam daran teilzunehmen.
- Sie verfügen über Fähigkeiten, um Fachliteratur zu verstehen und zu analysieren und auf einem B2/C1 Niveau Texte zu verfassen.
- Die Studierenden besitzen Wissen über sprachliche Ausdrucksmittel auf B2/ C1 Niveau im beruflichen Kontext.
- Sie verstehen komplexere Inhalte ihres Spezialgebietes und können relativ spontan und flexibel darüber diskutieren.
- Sie erwerben die Fähigkeit grammatikalische Strukturen funktionell und zielsicher in ihren zukünftigen Berufsfeldern anzuwenden.
- Sie sind in der Lage klare, detaillierte und ausführliche Präsentationen zu komplexen Themen im Bereich Künstlicher Intelligenz zu halten und Fragen dazu umfassend zu beantworten.
- Eigene Meinungen und unterschiedliche Gesichtspunkte, wie auch die Abwägung der Vor- und Nachteile, können effektiv und möglichst spontan vorgebracht werden.

Methodenkompetenz

Die Methodenkompetenz bezieht sich auf die Fähigkeit der Studierenden, verschiedene Lern- und Arbeitsmethoden anzuwenden, um ihre sprachlichen und fachlichen Kenntnisse weiterzuentwickeln.

- Die Studierenden erweitern ihre Fähigkeiten im Spracherwerb, in dem sie ihre individuellen Lernstile reflektieren.
- Sie können Informationen aus unterschiedlichen englischen Quellen filtern und für Diskussionen und Präsentationen verarbeiten.
- Sie sind in der Lage aktiv und möglichst selbstwirksam an Fachdiskussionen und -debatten im Bereich Künstlicher Intelligenz teilzunehmen, indem sie Argumente präsentieren und konstruktives Feedback geben.

Kritische Reflexion der eigenen Lernfortschritte und -strategien.

Soziale Kompetenz

Die soziale Kompetenz bezieht sich auf die Fähigkeit der Studierenden, in sozialen Interaktionen angemessen zu handeln, effektiv zu kommunizieren und erfolgreich in Gruppen zu arbeiten.

- Die Studierenden trainieren ihre sozialen Kompetenzen der Teamfähigkeit, Zuverlässigkeit und des Verhandlungsgeschicks.
- Sie verfügen über kommunikative Fertigkeiten gemeinsam mit anderen Lösungen zu erarbeiten.
- Sie reflektieren ihre Lernerfahrungen aus eigenständigen Projekten und Teamarbeit.
- Sie empfinden Empathie und verfügen über die Fähigkeit, andere Perspektiven und Meinungen zu verstehen und angemessen zu reagieren.
- Sie erwerben die Fähigkeit zur konstruktiven Konfliktlösung und zur Vermittlung zwischen verschiedenen Standpunkten.

Persönliche Kompetenz

Die persönliche Kompetenz bezieht sich auf die individuellen Fähigkeiten, Einstellungen sowie Eigenschaften, die es den Studierenden ermöglichen, ihre Ziele zu erreichen, ihre persönliche Entwicklung voranzutreiben und erfolgreich zu agieren.

- Vermittlung von fundierten Sprachkenntnissen und Sozialkompetenzen, die für die persönliche Weiterentwicklung und die zukünftige Arbeitswelt elementar wichtig sind.
- Förderung der Problemlösungskompetenzen und der Fähigkeit, Lösungen relativ fließend auf Englisch zu erklären.

Deutsch

Die Qualifikationsziele des Moduls können der entsprechenden Kursbeschreibung auf der Homepage des AWP- und Sprachenzentrums entnommen werden: https://th-deg.de/awp-und-sprachenzentrum#deutschalsfremdsprache

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für CY-2: Schlüsselqualfikation 2 - Fachsprache Englisch

Zugangs- bzw. empfohlene Voraussetzungen

Fachsprache Englisch

Die Voraussetzung, um am Modul erfolgreich teilnehmen zu können ist das Beherrschen der englischen Sprache auf einem B2 Niveau, in Anlehnung an den Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

Deutsch

Die Voraussetzung, um am Modul teilnehmen zu können ist das Vorweisen des Sprachniveaus von mindestens Deutsch B2, in Anlehnung an den Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

Inhalt

Fachsprache Englisch

- 1 Einführung in Cyber Security/KI
- 2 Mathematik
- 3 Grundlagen der Informatik 3.1 Computerarchitektur 3.2 Betriebssysteme 3.3 Netzwerke 3.4 Datenstrukturen
- 4 Software engineering (z.B.: OOP)
- 5 Fallstudien (z.B.: Alan Turing, Hacking und Pen-Testing, AGI, Kryptographie, ML)
- 6 Kommunikative Fähigkeiten (z.B.: Präsentationen, Besprechungen)
- 7 Schreibfertigkeiten (z.B.: Textkohäsion und -kohärenz, Geschäftskorrespondenz, Software Dokumentation)
- 8 Grammatik (z.B.: Zeiten, Passivstrukturen)

Deutsch

Die Inhalte können der entsprechenden Kursbeschreibung auf der Homepage des AWPund Sprachenzentrums entnommen werden:

https://th-deg.de/awp-und-sprachenzentrum#deutschalsfremdsprache

Lehr- und Lernmethoden

Der Fokus der Lehrmethoden liegt auf der Optimierung der vier Hauptsprachfertigkeiten (Hörverständnis, Sprechen, Lesen und Schreiben). Beispiele der angewendeten Lehrmethoden sind diverse Formen der Gruppen- und Einzelarbeit, Minipräsentationen, Übungen zum intensiven Lesen und Hören, Rollen- und Grammatikspiele, Loci-Methode, Laufdiktate, Übersetzungen, Peer-Feedback, Arbeit mit Lernstationen, und verschiedenen Schreibaktivitäten zur Vertiefung des erlernten Stoffes.

Es werden wöchentlich Aufgaben zum Selbststudium gestellt.

Besonderes

In allen Sprachkursen herrscht eine Anwesenheitsplicht von 75%, um an der Prüfung teilnehmen zu dürfen.

Empfohlene Literaturliste

Fachsprache Englisch

- Bonamy, David. Technical English 4. Harlow, England: Pearson Education, 2011. Print.
- Brieger, Nick & Alison Pohl. Technical English: Vocabulary and Grammar. Oxford: Summertown, 2002. Print.
- Büchel, Wolfram, et al. Technical Milestones: Englisch für technische Berufe. Stuttgart: Ernst Klett, 2013. Print.
- Butterfield, Andrew & Gerard Ekembe Ngondi, editors. Oxford Dictionary of Computer Science. Oxford: OUP, 2016. Print.
- Dasgupta, Subrata. Computer Science: A Very Short Introduction. Oxford: OUP, 2016. Print.
- DK . The Science Book: Big Ideas Simply Explained. London: DK, 2014.
 Print.
- Emmerson, Paul. Business Vocabulary Builder. London: Macmillan, 2009. Print.
- Emmerson, Paul. Business English Handbook. London: Macmillan, 2007.
 Print.
- engine: Englisch für Ingenieure. <www.engine-magazin.de> (Darmstadt).
 Various issues. Print.
- Glendinning, Eric H. & John McEwan. Oxford English for Information Technology. 2nd ed. Oxford: OUP, 2006. Print.
- Ibbotson, Mark. Cambridge English for Engineering . Cambridge: Cambridge UP, 2008. Print.
- Ince, David. The Computer: A Very Short Introduction . Oxford: OUP, 2011.
 Print.
- Inch: Technical English. (Karlsruhe). Various Issues. Print.
- Munroe, Randall. What If? London: John Murray, 2015. Print.
- Schäfer, Wolfgang, et al. IT Milestones: Englisch für IT-Berufe . Stuttgart: Ernst Klett, 2013. Print.
- Schulze, Hans Herbert. Computer-Englisch: Ein englisch-deutsches und deutsch-englisches Fachwörterbuch. Hamburg: Rowohlt Taschenbuch Verlag, 2015. Print.
- Vince, Michael. Advanced Language Practice. London: Macmillan, 2009.
 Print.
- Wagner, Georg & Maureen Lloyd Zoerner. Technical Grammar and Vocabulary: A Practice Book for Foreign Students. Berlin: Cornelsen, 1998.
 Print.

Deutsch

Die Literaturempfehlungen können der entsprechenden Kursbeschreibung auf der Homepage des AWP- und Sprachenzentrums entnommen werden: https://th-deg.de/awp-und-sprachenzentrum#deutschalsfremdsprache

KI-13 Datenbanken

Modul Nr.	KI-13
Modulverantwortliche/r	Prof. Dr. Benedikt Elser
Kursnummer und Kursname	KI-13 Datenbanken
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach Abschluss des Moduls verstehen die Studierenden die Bedeutung von Datenbanken und können Ihren Einsatz differenziert betrachten. Sie lernen die Vorgehensweise bei der Erstellung eines Datenmodells kennen und können diese in einer konkreten Datenbank umsetzen. Im Rahmen dieses Kurses erlernen sie, wie sie auf relationale Datenbanken mit SQL zugreifen und entwickeln Anwendungen auf Basis einer Datenbank. Die Teilnehmer erwerben Kenntnisse von Performanceoptimierung bei Ablage und Zugriff auf Daten und verstehen das Zusammenspiel von Applikations-, Präsentations- und Datenbankserver bei der Programmierung, insbesondere auch in einer Web-Umgebung.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernziele erreicht:

Fachkompetenz

 Die Studierenden verstehen die Konzepte von Datenbanken und deren Einsatz.

Methodenkompetenz

 Die Studierenden haben die Fähigkeit Software unter Einsatz einer Datenbank zu erstellen.

Sozialkompetenz

- Im Rahmen der Vorlesungen finden Übungen statt. Die Studierenden sind damit in der Lage, die Datenbankentwürfe ihrer Kollegen zu verstehen, zu kritisieren und durch eigene Beiträge zu komplementieren.

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene softwaretechnische Ideen mit Hilfe von Datenbanken umsetzten und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen.

Verwendbarkeit in diesem und in anderen Studiengängen

Die Module Programmieren II, Programmierprojekt, Datenvisualisierung und Datenmanagement sowie Software Engineering bauen thematisch auf diesem Modul auf. Das Modul kann in anderen Studiengängen wie Bachelor Wirtschaftsinformatik und Bachelor Cyber Security verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

Modul Informatik

Die Kenntnis einer Programmiersprache ist wünschenswert.

Office-Anwendungen werden vorausgesetzt.

Inhalt

- 1 Einleitung
 - 1.1 Einführung
 - 1.2 Wozu Datenbanken?
 - 1.3 Beispiele
- 2 Datenmodellierung
 - 2.1 Redundanz
 - 2.2 Datenmodellierung
 - 2.3 Objektorientiert
 - 2.4 Relationales Datenmodell
 - 2.5 Normalisierung
- 3 SQL
 - 3.1 SQLite, eine Datenbank für die Hosentasche
 - 3.2 SQL Data Definition Language
 - 3.3 SQL Data Manipulation Language

- 3.4 Tabellen und Beziehungen
- 3.5 Datenmodelle
- 3.6 View
- 4 Fortgeschrittene Konzepte
 - 4.1 Ziele bei Datenablage/-Zugriff
 - 4.2 ACID
 - 4.3 Sequentielle Datenorganisation
 - 4.4 Indexsequentielle Datenorganisation
 - 4.5 Relative Satzorganisation
 - 4.6 Optimierung
 - 4.7 Bäume
 - 4.8 Implementierungen
 - 4.9 Objekt Relationales Mapping
- 5 Ausblick NoSQL
 - 5.1 Grundlange verteilte Systeme
 - 5.2 Key / Value Stores
 - 5.3 Dokumentdatenbanken
 - 5.4 Graphdatenbanken

Lehr- und Lernmethoden

- Vorlesungen mit Übungen
- Der Anteil der begleitenden Übung entspricht ca. 25% der Präsenzveranstaltungen. In einem ähnlichen Umfang zum Lehrmaterial werden begleitende Übungsaufgaben zur Vertiefung und Prüfungsvorbereitung zur Vorlesungsnachbereitung zur Verfügung gestellt.
- Der Leistungsnachweis setzt sich aus Übungsaufgaben zusammen.

Empfohlene Literaturliste

Thomas M. Conolly, Carolyn E. Begg: Database systems, A practical approach to design, implementation, and managment. Addison-Wesley, an imprint of Pearson Education, 4th edition 2005.

Kemper A., Eickler A.: Datenbanksysteme: Eine Einführung, Oldenbourg Wissenschaftsverlag

Preiß, N. (2007), Entwurf und Verarbeitung relationaler Datenbanken, Oldenbourg, München u.a.

KI-14 Stochastik

Modul Nr.	KI-14
Modulverantwortliche/r	Prof. Dr. Stefan Hagl
Kursnummer und Kursname	KI-14 Stochastik
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden haben nach Abschluss des Moduls folgende Lernziele erreicht: Im Vordergrund steht die Fach- und die Methodenkompetenz in Stochastik. Die Studierenden verfügen über Kenntnisse der Konzepte der deskriptiven und induktiven Statistk. Der Erwerb von sozialen Kompetenzen steht bei diesem Modul naturgemäß nicht im Vordergrund, wird aber durch Kooperation der Studierenden und gemeinsames Erarbeiten von Lösung gefördert. Die persönliche Kompetenz wird durch vertieftes selbständiges Erarbeiten und Lösen komplexer Probleme geschärft.

Deskriptive Statistik:

Die Studierenden kennen die Konzepte der deskriptiven Statistik insbesondere für univariate und bivariate Beschreibungen. Sie sind in der Lage statistische Fragestellungen dieser Gebiete aus der betrieblichen Praxis zu erkennen, zu modellieren und zu lösen. Dazu setzen sie Softwarewerkzeuge, wie beispielsweise die Statistikfunktionen in Tabellenkalkulationsprogrammen (MS Excel, OpenOffice Calc oder LibreOffice), ein. Induktive Statistik:

Die Studierenden kennen die Konzepte der induktiven Statistik basierend auf Wahrscheinlichkeitstheorie. Die in der Praxis vorkommenden statistischen Fragenstellung des Schließens von einer Stichprobe auf Gesamtpopulationen können je nach Themenstellung mit einer statistischen Technik des Schätzens von Parametern, dem Durchführen von parametrischen Hypothesentests und von Anpassungstests gelöst werden. Sie sind in der Lage dazu die notwendige Modellbildung mit Zufallsvariablen, Testfunktionen und ihren Wahrscheinlichkeitsverteilungen zu erstellen. Dazu setzen sie Softwarewerkzeuge, wie beispielsweise die Statistikfunktionen in Tabellenkalkulationsprogrammen (MS Excel, OpenOffice Calc oder LibreOffice), ein.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für Bachelor Künstliche Intelligenz:

- KI-21 Maschinelles Lernen
- KI-28 KI-Projekt
- KI-29 Deep Learning/Big Data
- KI-36 Bachelorarbeit

Verwendbarkeit des Moduls für Bachelor Cyber Security:

- CY-B-20: Wahlpflichmodul Projekt
- CY-B-21: Kryptologie 2
- CY-B-22: Management von IT-Sicherheitsvorfällen
- CY-B-27: Digitale Forensik
- CY-B-29: Security Engineering
- CY-B-32: Auditierung von IT-SystemenM

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

Mathematik 1

Inhalt

Teil Deskriptive Statistik:

- 1 Grundlagen und Grundbegriffe
 - Merkmale, Merkmalsträger
 - Ausprägungen, Skalenniveau
 - Grundgesamtheit, Voll-/Teilerhebung
 - Primär- und sekundärstatistische Erhebung
 - Erhebungstechniken
- 2 Häufigkeitsverteilungen
 - Urliste

- Häufigkeitsverteilung
- Gruppierung und Klassifikation
- Graphischen Darstellungen

3 Lageparameter

- Das arithmetische Mittel
- Das gewogene arithmetische Mittel
- Der Median oder Zentralwert
- Der Modus oder Modalwert
- Das geometrische Mittel
- Das harmonische Mittel und das gestutzte Mittel

4 Streuungsmaße

- Spannweite
- Mittlere absolute Abweichung
- Mittlere quadratische Abweichung (Varianz)
- Standardabweichung
- Quantile, Quartile und Semiquartilsabstand
- Der Quartilskoeffizient

5 Konzentrationsmaße

- absolute und relative Konzentration
- Herfindahl-Index
- Konzentrationsraten und Konzentrationskurven
- Das Maß von Lorenz/Münzner
- Der Lorenzkoeffizient
- Die Lorenzkurve

6 Indexzahlen

- Zeitreihen
- Gliederungszahlen, Messziffern, Wachstumsraten
- Umbasierung und Verkettung
- Preisindex
- Mengenindizes
- Wertindex

7 Regression

- Regressionsrechnung
- Lineare Einfachregression
- Die Methode der kleinsten Quadrate
- Determinationskoeffizient
- Prognose
- Nichtlineare Regression und Mehrfachregression

8 Korrelaton

- Der Korrelationskoeffizient von Bravais-Pearson
- Eigenschaften von Varianz und Covarianz
- Rangkorrelation nach Spearman-Pearson

- Korrelationsmaßzahlen für nominale Variablen

Teil Induktive Statistik:

- 1 Elementare Wahrscheinlichkeitstheorie
 - Wahrscheinlichkeitsbegriffe
 - Zufallsexperimente und Ereignisse
 - Axiome nach Kolmogorov
 - Zweistufige Experimente und bedingte Wahrscheinlichkeit
 - Satz von Bayes
- 2 Zufallsvariablen
 - Zufallsvariablen
 - Diskrete Wahrscheinlichkeitsverteilungen und Verteilungsfunktion
 - Stetige Wahrscheinlichkeitsverteilungen und Dichtefunktion
 - Erwartungswert und Varianz einer Zufallsvariablen
- 3 Verteilungen I
 - Binomialverteilung
 - Normalverteilung
 - Multinomialverteilung
 - Hypergeometrische Verteilung
 - Poissonverteilung
- 4 Stichprobenverteilungen
 - Stichproben
 - Auswahlverfahren
 - Stichprobenverteilung
- 5 Zentraler Grenzwertsatz und Anwendungen
 - Zentraler Grenzwertsatz
 - Stichprobenverteilung des Mittelwerts
 - Stichprobenverteilung des Anteilswerts
 - Stichprobenverteilung der Standardabweichungen
 - Stichprobenverteilung von Differenzen
- 6 Parametrische Hypothesentests
 - Nullhypothesen und Testtheorie
 - Entscheidungsfehler
 - Tests für Mittelwert, Anteilswert, Standardabweichung und Differenzen
 - Güte eines Tests
- 7 Schaetzstatistik
 - Punktschätzverfahren: Momentenmethode
 - Punktschätzverfahren: Maximum-Likelihood
 - Gütekriterien
 - Intervallschätzung und Konfidenzintervall
- 8 Verteilungen II
 - Student-t-Verteilung

- Chi-Quadrat-Verteilung
- F-Verteilung
- 9 Parametrische Hypothesentests mit kleine Stichproben
 - Anteilswerttest Binomialtest
 - Anteilswertdifferenztest Fishertest
 - Mittelwert- und Mittelwertdifferenztest
 - Varianzquotiententest
- 10 Anpassungstests
 - Verteilungshypothesen
 - Chi-Quadrat-Anpassungstest
 - Unabhängigkeitstests

Lehr- und Lernmethoden

In klassischer Vortragstechnik werden Theorie und Anwendungen vermittelt und dargestellt. Viele Konzepte werden anhand konkreter Aufgabenstellungen erarbeitet und mit einem SW-Werkzeug gelöst. Übungsaufgaben zur eigenen Bearbeitung durch die Studierenden werden gestellt. Lösungen zu einer Auswahl davon werden zu Beginn der nächsten Vorlesung durch Studierende vorgetragen. Alternativ werden Lösungsvorschläge der Studierenden im iLearn-System diskutiert.

Empfohlene Literaturliste

Literatur:

- Bourier G. (2022), Beschreibende Statistik, Praxisorientierte Einführung. Mit Aufgaben und Lösungen, 14. Aufl. Gabler-Verlag, ISBN 3658370203
- Bourier G. (2018), Wahrscheinlichkeitsrechnung und schließende Statistik, Praxisorientierte Einführung. Mit Aufgaben und Lösungen, 9. akt. Aufl. Gabler-Verlag, ISBN 3658074809
- Falk, Becker, Marohn (2004), Angewandte Statistik mit SAS, Springer Verlag, Berlin
- Georgii, H.O. (2015), Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Walter de Gruyter, Berlin
- Grabmeier J., Hagl S. (2020), Statistik Grundwissen und Formeln, 4. Auflage, Haufe Taschen Guide 215, ISBN: 978-3-648-13965-3
- Hagl, S. (2017), Crashkurs Statistik inkl. Arbeitshilfen online.
 Daten erheben, analysieren und präsentieren. Haufe Verlag,
 ISBN: 978-3-648-09673-4
- Monka, Michael, Voss, Werner, Schöneck, Nadine (2008), Statistik am PC,
 Lösungen mit Excel, 5., aktualisierte und erweiterte Auflage, Hanser-Verlag,
 München

- Pflaumer, Heine, Hartung (2001), Statistik für Wirtschafts- und Sozialwissenschaftler, Deskriptive Statistik, Oldenbourg, München
- Puhani (2005), Statistik, Einführung mit praktischen Beispielen, Lexika-Verlag, Würzburg
- Schwarze, J. (2014), Grundlagen der Statistik: Band 1, 12. Aufl., nwb Studium.
- Schwarze, J. (2013), Grundlagen der Statistik: Band 2, 10. Aufl., nwb Studium
- Zwerenz, Karlheinz (2008), Statistik verstehen mit Excel, R. Oldenbourg Verlag, München Wien

Internetquellen:

- Hagl, S., VHB-Grundkurse Statistik I und II, https://kurse.vhb.org/

KI-15 Projektmanagement

Modul Nr.	KI-15
Modulverantwortliche/r	Prof. Dr. Alexander Rühr
Kursnummer und Kursname	KI-15 Projektmanagement
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verfügen über grundlegendes, allgemeines Wissen und grundlegendes Fach- und Methodenwissen in dem Bereich Projektmanagement.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden erwerben Kenntnisse im Planen, Überwachen und Steuern von Projekten und in der Gestaltung der hierfür erforderlichen Aufbau- und Ablauforganisation.

Methodenkompetenz

- Die Studierenden wenden ausgewählte Techniken des Projektmangements an.

Persönliche Kompetenz

- Die Studierenden erwerben Kenntnisse in der Eigenorganisation.

Sozialkompetenz

 Diese Kenntnisse wenden sie in verschiedenen Teams anhand eines praxisorientierten Software- oder Organisationsprojektes an. Dadurch werden Kooperations- und Kommunikationsfähigkeit sowie Konfliktfähigkeit gefördert.

Verwendbarkeit in diesem und in anderen Studiengängen

alle Module mit umfangreicheren Gruppen-/Projektarbeiten

Zugangs- bzw. empfohlene Voraussetzungen

Keine Voraussetzungen.

Inhalt

- 1 Erkennen der Charakteristika von Projekten im Vergleich zu Linienaufgaben in einem Unternehmen, Anforderungen an einen Projektleiter und seine Aufgaben
- 2 Projekt/Programnm/Portfolio
- 3 Klassisches Projektmanagement
 - 3.1 Die Phasen eines Projektes Darstellung der Projektmanagement-Aufgaben in den Phasen eines Projektes, Vorstellung des Zusammenhangs zwischen Projektmanagement-Standards und Phasenmodellen
 - 3.2 Projektorganisation Darstellung und Diskussion unterschiedlicher Formen der Organisation eines Projektteams, Mögliche Aufgaben- und Kompetenzverteilungen zwischen Projektleiter und Linienführungskräften, Zusammensetzung, Aufgaben und Kompetenzen anderer Gremien in einer Projektorganisation
 - 3.3 Planung von Umfang, Terminen, Ressourcen und Kosten -Vorgehensweise bei der Planung, Projektstrukturplan (Funktionen, Gliederungsformen, Arbeitspakete), Techniken für die Ablauf- und Terminplanung, Zusammenhänge zwischen Ablauf-/Terminplanung, Ressourcenplanung und Kostenplanung
 - 3.4 Projektdokumente zur Beschreibung des Leistungsumfangs
 Gegenstand der Leistungsbeschreibung, Darstellung von Projektauftrag, Lasten- und Pflichtenheft
 - 3.5 Risikomanagement Darstellung des Risikomanagements in Projekten
 - 3.6 Information und Kommunikation Gegenstand der Informationsplanung und des Projektordners,

- Projektmanagementwissen für Projektbesprechungen, Berichtsgestaltung, Präsentation und Kreativitätstechniken
- 3.7 Projektcontrolling Dimensionen der Projektsteuerung und -kontrolle mit den zugehörigen Kennzahlen, Verfahren und Vorgehensweisen, Darstellung des Änderungsmanagements und der Arbeiten für den Projektabschluss
- 4 Agiles Projektmanagement
 - 4.1 Einführung Agilität Grundgedanken, Werte/Prinzipien
 - 4.2 Scrum Rollen, Ereignisse, Artefakte
 - 4.3 Andere Agile Vorgehensmodelle Kanban, Scrumban
- 5 Klassisch, Agil, hybrid Einsatzfelder und Kombinationen von Klassischen und Agilen Ansätzen
- 6 Klassisches und hybrides Projektmanagement mit MS Project
- 7 Teilweise Durchführung eines praxisorientierten Software- oder Organisationsprojektes im Team

Lehr- und Lernmethoden

- Vorlesungen
- Übungen/Fallstudien in Einzel- und Gruppenarbeit
- Präsentationen

Besonderes

Der Leistungsnachweis besteht aus zwei Gruppenarbeiten, die jeweils mit einer gemeinsamen 15-minütigen Präsentation abgeschlossen werden.

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

Gloger, B. (2016), Scrum - Produkte zuverlässig und schnell entwickeln, 5. Auflage, Hanser Verlag, München

GPM Deutsche Gesellschaft für Projektmanagement, Gessler, M. (Hrsg.) (2019), Kompetenzbasiertes Projektmanagement (PM4)- Handbuch für die Projektarbeit,

Qualifizierung und Zertifizierung auf Basis der IPMA Competence Baseline Version 4, 1. Auflage, GPM Deutsche Gesellschaft für Projektmanagement, Nürnberg

Kerzner, H. (2003), Projektmanagement Fallstudien, 1. Auflage, mitp-Verlag, Bonn Kuster, J. u.a. (2019), Handbuch Projektmanagement, 4. Auflage, Springer Verlag, Berlin Martinelli, R.J., Milosevic, D.Z. (2016), Project Management ToolBox - Tools and Techniques for the Practicing Project Manager, 2. Auflage, Wiley, Hoboken, NJ Project Management Institute (Hrsg.) (2017 und 2021), A guide to the project management body of knowledge. PMBOK(R) Guide, 6. und 7. Auflage, Project Management Institute, Newtown Square, Pa

Röpstorff, S. u.a. (2016), Scrum in der Praxis, 2. Auflage, dpunkt.verlag, Heidelberg Rosenstock, J. (2016), Microsoft Project 2016 ? das umfassende Handbuch, 3. Auflage, Rheinwerk Verlag, Bonn

Schwaber, K., Sutherland, J. (2020), Der Scrum Guide, Scrum.Org and ScrumInc, o.O. Timinger, H. (2017), Modernes Projektmanagement: Mit traditionellem, agilem und hybridem Vorgehen zum Erfolg, 1. Auflage, Wiley, Hoboken, NJ

Verzuh, E. (2021), The Fast Forward MBA in Project Management, 6. Auflage, Wiley, Hoboken, NJ

Wies, P. (2014), Project 2013 Grundlagen, 1. Auflage, Herdt-Verlag, Bodenheim

KI-16 Assistenzsysteme

Modul Nr.	KI-16
Modulverantwortliche/r	Prof. Dr. Udo Garmann
Kursnummer und Kursname	KI-16 Assistenzsysteme
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierenden verfügen über die notwendigen Kompetenzen zur Planung und Erstellung von Assistenzsystemen. Sie kennen verschiedene Definitionen des Begriffs "Assistenzsystem" sowie verschiedene Formen von Assistenzsystemen wie Sprachassistenten oder Assistenzsysteme zur Entscheidungsunterstützung.

Fachkompetenz

- Die Studierenden kennen die Geschichte von Sprachassistenten.
- Die Studierenden können einen Dialog für einen Sprachassistenten planen. Dabei verwenden sie Aspekte des "Conversational Designs".
- Die Studierenden können ein System zur Entscheidungsunterstützung entwickeln; hierzu gehören Planung, Algorithmenentwicklung und Implementierung einer Benutzeroberfläche.

Sozialkompetenz

 Im Rahmen der Vorlesungen finden viele Übungen zu Projektarbeiten statt. Die Studierenden sind damit in der Lage, ähnliche Arbeiten Ihrer

Kommilitonen zu verstehen und zu bewerten. Sie sind in der Lage, Dokumentationen und Software in einer Form zu erstellen, die eine Kooperation im Team zulässt. (5 - Beurteilen)

Methodenkompetenz

- Die Studenten haben die Fähigkeit, Assistenzsysteme zu planen und mit Hilfe von Python oder R zu erstellen. (3 - Anwenden)

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene Ideen umsetzten und gegen\u00fcber anderen Ans\u00e4tzen verteidigen. (6 - Erschaffen)

Verwendbarkeit in diesem und in anderen Studiengängen

KI-36 Bachelorarbeit

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

KI-7 Mathematik 2

KI-8 Programmierung 2

Inhalt

Sprachverarbeitung Grundlagen

Conversational Design

Entwicklung eines Sprachassistenten

Grundlagen der Spiel- und Entscheidungstheorie

Grafische Darstellung von Daten und Berechnungsergebnissen maschineller Lernverfahren

Entwicklung eines Entscheidungsassistenten einschließlich Benutzeroberfläche

Lehr- und Lernmethoden

Seminaristischer Unterricht

Marktplatz

Diskussionen

Präsentationen

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

Sehr dynamisch, da projektorientierte Vorlesung, z.B.

- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed.). O'Reilly Media.
- Laux Helmut, Robert M. Gillenkirch, Heike Y. Schenk-Mathes. Entscheidungstheorie. Springer, 2012.
- Ludwig Bernd. Planbasierte Mensch-Maschine-Interaktion in multimodalen Assistenzsystemen. Springer, 2015.
- Moore R.J.. Conversational UX Design: Association for Computing Machinery. 2019
- Moore, R. J., Szymanski, M. H., Arar, R., & Ren, G. J. (Eds.) Studies in Conversational UX Design. Cham: Springer. 2018
- Pearl, C.. Designing voice user interfaces: Principles of conversational experiences. Beijing: O'Reilly. 2017
- Sievert Carson. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall, 2020.
- Wagner Bernhard, J, Konnektivität von Assistenzsystemen, Springer-vieweg Verlag · 2020

KI-17 KI-Programmierung

Modul Nr.	KI-17
Modulverantwortliche/r	Prof. Dr. Isabel Hübener
Kursnummer und Kursname	KI-17 KI-Programmierung
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Studierende verfügen über sehr gute Kompetenzen zum selbständigen Entwurf, zur Implementierung und zum Testen von KI-basierten Anwendungen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernziele erreicht:

Fachkompetenz

- Die Studierende verstehen die wesentlichen KI Methoden und Algorithmen, und deren Implementierung.

Sozialkompetenz

- Im Rahmen der Vorlesungen finden praktische Übungen statt. Die Studierenden sind damit in der Lage, die Inhalte von Programmen ihrer Kollegen zu verstehen, ihre Ansätze zu kritisieren und durch eigenen Beiträge zu komplementieren. Sie sind in der Lage, Programme in einer Form zu erstellen, die eine Kooperation im Team zulässt.

Methodenkompetenz

- Die Studenten erstellen Programme unter Einsatz geeigneter KI-Werkzeugen (z.B. KI-Programmirersprachen)

Persönliche Kompetenz

- Die Studenten erkennen die praktische Anwendbarkeit der KI Methoden und Werkzeuge, formulieren Lösungen und stezen diese um.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul kann als Grundlage für weitere KI-Fächer und in anderen Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

KI-1 Mathematik I

KI-2 Programmieren I

KI-7 Mathematik II

KI-8 Programmieren II

KI-9 Algorithmen und Datenstrukturen

KI-11 Computational Logic

Inhalt

- Überblick über die Programmierersprache Python
- Neuronale Netze und Backpropagation
- Implementierung von LLMs
- Symbolisches Rechnen
- Constraintprogrammierung
- SAT-Solvers
- SMT-Solvers

Lehr- und Lernmethoden

- Seminaristischer Unterricht
- Praktische Übungen
- Programmierung von Anwendungsbeispieln

Empfohlene Literaturliste

- Thorsten Altenkirch und Isaac Triguero: *Conceptual Programming with Python*, Lulu 2019.
- Russell, S., Norvig, P. (2012), Künstliche Intelligenz, 3. Aufl., Pearson, München

KI-18 Schlüsselqualifikation 3 (Technikethik und Nachhaltigkeit, wissenschaftliches Arbeiten)

Modul Nr.	KI-18
Modulverantwortliche/r	Prof. Dr. Roland Zink
Kursnummer und Kursname	KI-18 Schlüsselqualifikation 3 (Technikethik und Nachhaltigkeit, wissenschaftliches Arbeiten)
Semester	3
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Inhalte des Moduls setzen sich aus den Inhaltsangaben der beiden Fächer "Technikethik und Nachhaltigkeit" sowie "Wissenschaftliches Arbeiten" zusammen.

Technikethik und Nachhaltigkeit

Seit der Formulierung von Sustainable Development Goals (SDGs) durch die Vereinten Nationen im Jahr 2015 besteht ein umfassender Orientierungsrahmen, wie sich die Menschheit in Zukunft entwickeln soll und wie Handlungen bzw. das Verhalten von Gesellschaften aber auch einzelnen Menschen hinsichtlich dieses Entwicklungsziels zu bewerten sind. Dies gilt im Besonderen auch für technische Entwicklungen, indem ständig geprüft werden muss, ob die neuen Techniken sowohl ethischen als auch den nachhaltigen Vorgaben entsprechen und tatsächlich einen Fortschritt für die gesellschaftliche Entwicklung erzeugen. Die Notwendigkeit einer nachhaltigen Entwicklung wird im Verlauf des Kurses mit der digitalen Transformation unserer Gesellschaft und

Wirtschaft verknüpft und dabei um technikethische Gesichtspunkte ergänzt. Neben einer Einführung in ethische Grundlagen wird hierbei insbesondere auf den ACM Code of Ethics and Professional Conduct (The Code) eingegangen.

Fachkompetenz

- Die Studierenden verstehen die Grundidee einer nachhaltigen Entwicklung und deren zukünftige Notwendigkeit.
- Die Studierenden kennen die globalen Entwicklungsziele (SDGs) und können ihr eigenes Verhalten und sowohl bestehende Technologien als auch potenzielle Erfindungen in diesem Rahmen bewerten.
- Die Studierenden kennen diesbezüglich speziell auch Verfahren des "Life Cycle Assessment", der Kreislaufwirtschaft und die Idee von "Cradle to Cradle".
- Die Studierenden kennen ethische Grundlagen und Anforderungen im Kontext technischer Innovationen und Entwicklung und können diese in ihrem Studium bzw. ihrer späteren beruflichen Tätigkeit anwenden.
- Die Studierenden kennen wichtige Begriffe wie Bewusstsein und Intelligenz und verstehen Probleme beim Übertragen dieser Begriffe auch Maschinen.
- Die Studierenden k\u00f6nnen technologische Entwicklungen im Bereich der K\u00fcnstlichen Intelligenz kritisch hinsichtlich Nachhaltigkeit und Ethik reflektieren.

Wissenschaftliches Arbeiten

"Wissenschaftlich oder technisch schreiben zu können ist eine Schlüsselkompetenz, die für das Vorankommen in Studium und Beruf entscheidend ist. Diese akademische Schreibkompetenz bringen Studierende in der Regel nicht aus der Schule mit, sondern erwerben sie parallel zur Akkulturation im Fach." Dieses Zitat aus der Broschüre des Zentrums für Hochschuldidaktik (DIZ, 2016) zeigt die inhaltliche Ausrichtung des Moduls auf. Die Studierenden sollen mit den Inhalten früh auf das Studium und auf wissenschaftliches Arbeiten vorbereitet werden. Der Kurs spannt dabei einen Bogen von den Anforderungen an wissenschaftliches Arbeiten über dem Prozessablauf, Forschungsmethoden, Forschungsdatenmanagement bis hin zu den Qualitätskriterien wissenschaftlicher Arbeiten.

Praxisorientiert lernen die Studierenden geeignete wissenschaftliche Literatur zu finden, diese zu verwalten und auch für wissenschaftliche Arbeiten zu verwenden (z.B. lesen, verstehen, exzerpieren, zitieren). In Übungen trainieren die Studierenden wissenschaftliches Schreiben, Forschungsdatenmanagement und wissenschaftliche Datenvisualisierung. Zielsetzung ist es, die Studierenden anhand des IMRD-Modells (Introduction, Methods, Results, Discussion) auf wissenschaftliche Projekt- und Studienarbeiten (PStA) sowie die Bachelor-Abschlussarbeit vorzubereiten.

Fachkompetenz

- Die Studierenden kennen die Anforderungen und Qualitätskriterien des wissenschaftlichen Arbeitens.

- Die Studierenden erarbeiten den Prozessablauf des wissenschaftlichen Arbeitens und die Strukturierung wissenschaftlicher Arbeiten anhand des IMRD-Modells.
- Die Studierenden werden befähigt, selbstständig wissenschaftlich zu arbeiten, um insbesondere Recherche-, Bibliotheks- und Literatur- und Schreibarbeit durchführen zu können.
- Die Studierenden kennen die Regeln zum Verfassen von studentischen Arbeiten und die Qualitätskriterien für wissenschaftliche Arbeiten im studentischen Kontext und können diese anwenden.
- Die Studierenden können den Einsatz von generativer KI für wissenschaftliche Zwecke kritisch reflektieren.

Technikethik und Nachhaltigkeit & Wissenschaftliches Arbeiten Methodenkompetenz

- Die Studierenden werden zu selbstständigen Arbeiten befähigt.
 - Die Studierenden werden zum kritischen Denken und Reflektieren befähigt.

Sozialkompetenz

- Die Studierenden trainieren in Übungen Partner- und Teamarbeit.
- Die Studierenden können die, in den Übungen selbstständig erzielten, Lösungen vor der Gruppe präsentieren und erklären.
- Die Studierenden erlernen eigenverantwortliches Arbeiten.

Persönliche Kompetenz

 Die Studierenden erlernen durch Übungen selbstständiges und problembzw. handlungsorientiertes Arbeiten.

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul legt Grundlagen für das Studium im Allgemeinen und ist insbesondere mit folgenden weiterführenden Modulen verknüpft:

Alle weiterführenden Schlüsselqualifikationen

Praxismodul

Bachelormodul

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlene Voraussetzung: Besuch bzw. erfolgreicher Abschluss der zuvor vorgesehenen Schlüsselqualifikationen.

Inhalt

Technikethik und Nachhaltigkeit

- Konzepte und Definitionen von Nachhaltigkeit bzw. Nachhaltiger Entwicklung
- Nachhaltigkeitsmodelle
- Optimierung und Innovation als Strategien zur Operationalisierung
- Life Cycle Assessment, Cradle to Cradle, Kreislaufwirtschaft und Rebound-Effekt
- Digitale Transformation und ethische und nachhaltige Aspekte
- Grundlagen Technikethik
- Bewusstsein und Intelligenz
- Ethische Aspekte für Informatiker und Programmierer
- ACM Code of Ethics and Professional Conduct (The Code)
- Reflektiertes Denken zu technischen Innovationen wie KI

Wissenschaftliches Arbeiten

- Wissenschaftliches Arbeiten: Anforderungen, Prozess und Qualitätskriterien
- Wissenschaft und Forschung
- IMRD-Modell
- Literatursuche, -bewertung und -auswertung
- Themenwahl und Forschungsfrage
- Forschungsstand und Theorie
- Wissenschaftliche Methoden, Empirie und Forschungsdatenmanagement
- Anfertigen einer wissenschaftlichen Arbeit inkl. Strukturierung und Gliederung
- Grundlagen wissenschaftlichen Schreibens inkl. Abstract and Conclusion
- Wissenschaftliche PStA und Abschlussarbeit

Lehr- und Lernmethoden

- Seminaristischer Unterricht mit Gruppen- und Partnerarbeit
- Projektarbeit
- Blended Learning mit Online-Modulen

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt

Empfohlene Literaturliste

Technikethik und Nachhaltigkeit

- Braungart, M. & McDonough, W. (2014): Cradle to Cradle: Remaking the Way We Make Things. Piper Verlag.
 - Dixon-Decléve, S., Gaffney, O., Ghosh, J., Randers, J., Rockström,
 J. & Stoknes, P. E. (2023): Earth for All, ein Suvivalguide für unseren
 Planeten. Bundeszentrale für politische Bildung. Bonn.
 - Grimm, P., Keber, T. O. & Zöllner, O. (Hrsg.) (2022): Digitale Ethik, Leben in vernetzten Welten. Bundeszentrale für politische Bildung. Bonn. Nassehi, A. (2019): Muster, Theorie der digitalen Gesellschaft. C.H.Beck Verlag.
 - Pufe, I. (2018): Nachhaltigkeit. Bundeszentrale für politische Bildung.
 - Reckwitz, A. (2017): Die Gesellschaft der Singularitäten. Suhrkamp Verlag.
 - Spiekermann, S. (2021): Digitale Ethik. München.
 - Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU) (2019): Unsere gemeinsame digitale Zukunft. Berlin.

Wissenschaftliches Arbeiten

- Gerstmann, M. (2021): Wissenschaftliches Arbeiten. Stuttgart.
 - Karmasin, M. & Ribing, R. (2017): Die Gestaltung wissenschaftlicher Arbeiten. Utb.
 - Metschl, Ulrich (2016): Vom Wert der Wissenschaft und vom Nutzen der Forschung. Zur gesellschaftlichen Rolle akademischer Wissenschaft. Wiesbaden.
 - Sandberg, Berit (2017): Wissenschaftliches Arbeiten von Abbildung bis Zitat. Lehr- und Übungsbuch für Bachelor, Master und Promotion. De Gruyter Oldenbourg.
 - Voss, R. (2014): Wissenschaftliches Arbeiten. 3. Auflage. Wien.
 - (Zusätzlich werden Internetdokumente und Leitfäden verwendet!)

KI-19 Sprachverarbeitung

Modul Nr.	KI-19
Modulverantwortliche/r	Prof. Dr. Udo Garmann
Kursnummer und Kursname	KI-19 Sprachverarbeitung
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Ziel dieses Moduls ist es, die Verarbeitung natürlicher Sprache (NLP - Natural Language Processing), die es Computern ermöglicht, menschliche Sprache zu verarbeiten, zu erlernen. Wir beschäftigen uns täglich dutzende Male mit NLP, wie z.B. die Durchführung einer Google-Suche, Rechtschreibkorrektur auf einem Smartphone, die Klassifizierung von E-Mails als Spam oder die Erkennung von Handschrift. Moderne NLP-Algorithmen basieren stark auf Methoden des maschinellen Lernens. Die Studierenden erwerben Kenntnisse in NLP und können diese in Zukunft, z.B. in Projekten oder weiteren Studien, vertiefen.

Die Studierenden kennen Begriffe aus der Linguistik wie Syntax, Semantik, etc. Sie verstehen die verschiedenen Strukturen von Sprache. Sie können reguläre Ausdrücke (Analyse und Anwendung) in Python verstehen und anwenden. Die Studierenden kennen das Natural Language Toolkit (NLTK). Sie können das NLTK für verschiedene Formen der Sprachverarbeitung anwenden.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

 Die Studierenden verstehen die Konzepte der gängigsten Ansätze der Sprachverarbeitung. (2 - Verstehen)

Methodenkompetenz

- Die Studierenden haben die Fähigkeit, hochqualitative Programme unter Einsatz von Sprachverstehen-Technologien zu erstellen. (3 - Anwenden)

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene Verfahren umsetzen und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

 Im Rahmen der Lehrveranstaltung finden Programmierübungen statt.
 Die Studierenden sind damit auch in der Lage, Programme anderer Studierenden zu verstehen, zu kritisieren und zu komplementieren. (5 -Beurteilen)

Verwendbarkeit in diesem und in anderen Studiengängen

Unter anderem:

- KI-28 KI-Projekt
- KI-29 Deep Learning/Big Data

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

- KI-1 Mathematik 1
- KI-8 Programmierung 2
- KI-9 Algorithmen und Datenstrukturen

Inhalt

- Grundlagen: Stemming, Stopwords, n-grams
- Textklassifizierung: naive Bayes, Spamfilterung, Spracherkennung, logistische Regression
- Rechtschreibkorrektur
- Suchmaschinen: Ranking, Vektorraummodell, PageRank
- Grundlagen formaler Sprachen (mit Bezug zu NLP-Problemen)
- Reguläre Ausdrücke und Endliche Automaten (mit Bezug zu NLP-Problemen)

- Kontextfreie Grammatiken (mit Bezug zu NLP-Problemen)
- Analyse der Sprachsignals
- Ausblick: Embeddings, aktuelle Fortschritte in NLP

Lehr- und Lernmethoden

- Vorlesungen
- Diskussion von wissenschaftlichen Artikeln und aktuellen Nachrichten
- Übungen, einschließlich Rechnerübungen (Leistungsnachweis)

Empfohlene Literaturliste

- S. Bird, E. Klein and E. Loper, "Natural Language Processing with Python

 Analyzing Text with the Natural Language Toolkit ", Online at [NLTK website](https://www.nltk.org/book), visited 20/03/31.
- C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- D. Jurafsky, "Speech and Language Processing, An Introduction to Natural Language Processing ", Computational Linguistics, and Speech Recognition, Third Edition draft, available online at [Jurafsky:Homepage] (https://web.stanford.edu/~jurafsky), visited 20/03/31.
- C. Manning, P. Raghavan and H. Sch#ütze, "Introduction to Information Retrieval ", Cambridge University Press, 2008.
- B. Pfister und T. Kaufmann, "Sprachverarbeitung, Grundlagen und Methoden der Sprachsynthese und Spracherkennung ", 2., aktualisierte und erweiterte Auflage, Springer-Verlag GmbH Deutschland 2017, ISBN 978-3-662-52837-2.
- S. Russel and P. Norvig, "Artificial Intelligence: A Modern Approach ", Prentice Hall, third edition, 2009.

KI-20 Human Factors und Mensch-Maschine Interaktion

Modul Nr.	KI-20
Modulverantwortliche/r	Prof. Dr. Armin Eichinger
Kursnummer und Kursname	KI-20 Human Factors und Mensch-Maschine Interaktion
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach Absolvieren des Moduls haben die Studierenden folgende Lernziele erreicht: Fachkompetenz:

- Anwendung von Human Factors Grundlagen auf die inhaltliche Domäne
- Identifikation diverser Einflüsse und Determinanten auf die Arbeits- und Interaktionsqualität

Methodenkompetenz

- Kenntnis diverser methodischer Ansätze zur Untersuchung und Evaluation der Mensch-Maschine-Interaktion
- Systematische Analyse und Einordnung von situativen Einflüssen
- Systematische Analyse von Fehlerquellen und -arten

Personale Kompetenz:

 Realistische Einschätzung systemischer Einflüsse auf die Arbeitssituation im medizinischen Umfeld

- Verbesserung der Teamfähigkeit durch Kenntnis von Gruppenmechanismen

Verwendbarkeit in diesem und in anderen Studiengängen

Alle Module, bei denen die Interaktion von Artefakten mit menschlichen Operateuren zentraler Gegenstand ist.

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

Ausreichende statistische und methodische Kompetenzen, die üblicherweise in zwei je einsemesterigen Statistik/Stochastik-Veranstaltungen erarbeitet werden (hier: KI-14 Stochastik).

Inhalt

Einführung in das Gebiet der Mensch-Maschine-Interaktion

- Design von Alltagsgegenständen
- Kognitive Grundlagen
- Phänomene und Mechanismen der Aufmerksamkeit

Informationsdesign

- Darstellung von Information
 - Prinzipien der Display-Gestaltung

Usability, UX

- Begriffe, Modelle, Prozess
- Analyse: Methoden
- Evaluation: Methoden

Entscheidungsergonomie

- Phänomene und Mechanismen
- Anwendungen und Gestaltung

Lehr- und Lernmethoden

Vorlesung, seminaristische Teile, Übungen, Gruppenarbeit

Empfohlene Literaturliste

- DIN EN ISO 9241-11 (1998). Anforderungen an die Gebrauchstauglichkeit.
- DIN EN ISO 9241-210 (2010). Prozess zur Gestaltung gebrauchstauglicher interaktiver Systeme.

- Few, S (2013). Information Dashboard Design, Oakland: Analytics Press.
- Geis, T. & Tesch, G. (2019). Basiswissen Usability und User Experience. Heidelberg: dpunkt Verlag.
- Lee, J., Wickens C., Liu, Y. (2019). Designing for People: An Introduction to Human Factors Engineering. Charleston: CreatsSpace.
- Kahneman, D. (2012), Schnelles Denken, langsames Denken, Siedler, München
- Heinecke, A. M. (2011), Mensch-Computer-Interaktion, Springer Berlin,
 Berlin
- Krug, S. (2013), Don't Make Me Think: A Common Sense Approach to Web Usability, 3rd revised edition, New Riders
- Norman, D. A. (2013), The design of everyday things, Basic Books, New York, NY
- Richter, M., & Flückiger, M. D. (2013), Usability Engineering kompakt benutzbare Produkte gezielt entwickeln, Springer Vieweg, Berlin
- Sarodnick, F., & Brau, H. (2015), Methoden der Usability Evaluation: Wissenschaftliche Grundlagen und praktische Anwendung. Verlag Hans Huber, Bern
- Stapelkamp, T. (2010a), Informationsvisualisierung: Web Print Signaletik.
 Erfolgreiches Informationsdesign: Leitsysteme, Wissensvermittlung und
 Informationsarchitektur, Springer Berlin, Berlin
- Stapelkamp, T. (2010b), Interaction- und Interfacedesign: Web-, Game-, Produkt- und Servicedesign; Usability und Interface als Corporate Identity, Springer, Heidelberg
- Thaler, R., Sunstein, C. (2009/21), Nudge. Improving Decisions About Health, Wealth, and Happiness, Penguin, New York, London
- Tufte, E. R. (2001), The Visual Display of Quantitative Information, 2nd edition, Graphics Pr.
- Tufte, E. R. (2006), Beautiful evidence, Graphics Press, Cheshire, Conn.
- Tufte, E. R. (2010), Visual explanations: images and quantities, evidence and narrative, Graphics Press, Cheshire, Conn.
- Tufte, E. R. (2011), Envisioning information, Graphics Press, Cheshire, Conn.
- Ware, C. (2008), Visual thinking for design. Burlington, Morgan Kaufmann,
 MA
- Ware, C. (2013). Information visualization: perception for design, 3rd revised edition, Morgan Kaufmann
- Wickens, C. D., Hollands, J. G., Parasuraman, R. (2013). Engineering Psychology and Human Performance, Pearson Education, Upper Saddle River

KI-21 Maschinelles Lernen

Modul Nr.	KI-21
Modulverantwortliche/r	Prof. Dr. Robert Hable
Kursnummer und Kursname	KI-21 Maschinelles Lernen
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 75 Stunden Virtueller Anteil: 75 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ziel dieses Moduls ist es, Maschinelles Lernen als einen der bedeutendsten Bereiche der Künstlichen Intelligenz zu erlernen. Hierbei handelt es sich um selbstlernende Algorithmen, die in der Lage sind selbstständig Wissen aus Daten zu erzeugen und dann, etwa in Form von Prognosen, anzuwenden. Die Studierenden erwerben Wissen im Maschinellen Lernen und können dieses in Zukunft, z.B. in Projekten oder weiteren Studien, vertiefen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz:

- Die Studierenden verstehen das breite Spektrum von Techniken, Methoden und Einsatzgebieten des Maschinellen Lernens. (2 - Verstehen)

Methodenkompetenz

 Die Studierenden haben die Fähigkeit, KI-Systeme unter Einsatz von Maschinellem Lernen mit geeigneter Software zu erstellen. (3 - Anwenden)

- Die Studierenden haben die Fähigkeit, die Anwendbarkeit von Maschinellem Lernen für konkrete Problemstellungen in Unternehmen zu bewerten und geeignete Verfahren auszuwählen. (4 - Bewerten)

Persönliche Kompetenz

- Die Studierenden können eigene Verfahren umsetzen und gegenüber konkurrierenden Ansätzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

 Die Studierenden k\u00f6nnen in Gruppenarbeiten erstellte Ergebnisse pr\u00e4sentieren und mit anderen Studierenden \u00fcber erarbeitete L\u00f6sungen diskutieren. (2 - Reagieren)

Verwendbarkeit in diesem und in anderen Studiengängen

KI-36 Bachelorarbeit

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

KI-5 Einführung in die Künstliche Intelligenz (insbesondere Grundlagen in der Programmiersprache R, Grundkenntnisse der Datenanalyse und des Maschinellen Lernens)

Inhalt

- 1. Grundlagen: Prognosen und Kausalität
- 2. Statistische Kennzahlen und Explorative Datenanalyse
- 3. Supervised Learning: erste Verfahren
- 4 Bewertung von Prognosen: Gütemaße im Supervised Learning
- 5. Tuning Maschineller Lernverfahren (Leave-One-Out, Kreuzvalidierung)
- 6. Regularisierte Kern-basierte Verfahren (SVMs)
- 7. Universelle Konsistenz und Modellwahl (Bsp.: Additive Modelle mit L2-Boosting)
- 8. Dimensionsreduktion (Hauptkomponentenanalyse, LASSO)
- 9. Zeitreihen und Online-Learning
- 10. Unsupervised Learning: Clusteranalyse mit dem k-Means-Algorithmus

Lehr- und Lernmethoden

Die Konzepte und Techniken werden in Präsenzveranstaltungen (seminaristischer Unterricht) ergänzt durch virtuelle Lehrangebote (Blended Learning) vermittelt. Breiten Raum nehmen dabei konkrete Aufgabenstellungen anhand realer Datensätze ein, die von

den Studierenden am Rechner erarbeitet werden und zur Anwendung und Vertiefung der Methoden dienen.

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009): The Elements of Statistical Learning. Springer, New York

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2017): An Introduction to Statistical Learning: with Applications in R. Springer, New York

KI-22 Bildverstehen

Modul Nr.	KI-22
Modulverantwortliche/r	Prof. Dr. Patrick Glauner
Kursnummer und Kursname	KI-22 Bildverstehen
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Ziel dieses Moduls ist es, Computer Vision (CV), welche es Computern ermöglicht, visuelle Eingaben zu verarbeiten, zu erlenen. Wir beschäftigen uns täglich dutzende Male mit CV, z.B. Gesichtserkennung, Echtzeit-Übersetzung von Kameraeingaben oder automatische Markierung von Freunden auf Fotos. Moderne CV-Algorithmen basieren stark auf Methoden des maschinellen Lernens, insbesondere auf tiefen neuronalen Netzen. Die Studierenden erwerben Wissen in CV und können diese in Zukunft, z.B. in Projekten oder weiteren Studien, vertiefen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden verstehen die Konzepte der gängigsten Ansätze des Bildverstehen. (2 - Verstehen)

Methodenkompetenz

- Die Studierenden haben die Fähigkeit, hochqualitative Programme unter Einsatz von Bildverstehen-Technologien zu erstellen. (3 - Anwenden)

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene Verfahren umsetzen und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

 Im Rahmen der Lehrveranstaltung finden Programmierübungen statt.
 Die Studierenden sind damit auch in der Lage, Programme anderer Studierenden zu verstehen, zu kritisieren und zu komplementieren. (5 -Beurteilen)

Verwendbarkeit in diesem und in anderen Studiengängen

Unter anderem:

- KI-Projekt
- Deep Learning/Big Data

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

- KI-1 Mathematik 1
- KI-8 Programmierung 2
- KI-9 Algorithmen und Datenstrukturen

Inhalt

- Einführung: Anwendungen, Berechnungsmodelle für Sehen, Wahrnehmung und Vorwissen, Ebenen des Sehens, wie Menschen sehen
- Pixel und Filter: Digitalkameras, Bilddarstellungen, Rauschen, Filter, Kantenerkennung
- Bildregionen und Segmentierung: Segmentierung,
 Wahrnehmungsgruppierung, Gestalttheorie, Segmentierungsansätze,
 Bildkompression
- Feature-Erkennung: RANSAC, Hough-Transformation, Harris-Eckendetektor
- Objekterkennung: Herausforderungen, Template-Matching, Histogramme, maschinelles Lernen
- Convolutional Neural Networks: Neuronale Netze, Fehlerfunktionen und Optimierung, Backpropagation, Convolutions und Pooling, Hyperparameter, AutoML, effizientes Training, ausgewählte Architekturen

- Bildsequenzverarbeitung: Bewegung, Verfolgung von Bildsequenzen, Kalman-Filter, Korrespondenzproblem, optischer Fluss
- Grundlagen der mobilen Robotik: Roboterbewegung, Sensoren, probabilistische Robotik, Partikelfilter, SLAM
- Ausblick: 3D-Vision, Generative Adversarial Networks, selbstüberwachtes Lernen, Vision-Transformer

Lehr- und Lernmethoden

- Vorlesungen
- Projekte

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

- C. Bishop and H. Bishop, "Deep Learning: Foundations and Concepts", Springer, 2024.
- R. C. Gonzalez and R. Woods, "Digital Image Processing", Pearson, 4th edition, 2018.
- I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning", MIT Press, 2016.
- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach ", Pearson, 4th edition, 2021.

KI-23 Software Engineering

Modul Nr.	KI-23
Modulverantwortliche/r	Prof. Dr. Karsten Becker
Kursnummer und Kursname	KI-23 Software Engineering
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Prüfungsarten	Portfolio
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In diesem Modul erwerben die Studierenden Kompetenzen zu Prinzipien, Methoden, Techniken, Verfahren und Werkzeugen im Anwendungsbereich des Softwareengineering. Die Studierenden machen sich mit den Grundlagen des Software-Engineerings in Theorie und Praxis vertraut, um Anforderungen, Konzepte und Lösungen im Bereich der Künstlichen Intelligenz anwenden zu können.

Fachkompetenzen

Die Studenten analysieren, entwerfen, modellieren, implementieren und testen komplexe software Anwendungen, insbesondere im Bereich der Künstlichen Intelligenz.

Methodenkompetenzen

Die Studenten wenden ziel- und team-orientiert die geeigneten Projektstrukturen, modellbasierte Werkzeuge, Programmierersprachen und Testing-Ansätze an.

Sozialkompetenzen

Die Studenten beherrschen Kommunikation und Konfliktmanagement in Softwareengineeringprojekten.

Persönliche Kompetenz

Die Studenten agieren Teamorientiert um komplexe Softwareprojekte methodisch zu analysieren, modellieren, implementieren und testen; sie kommunizieren klar ihre Ansätze und gehen konstruktiv mit Kritik um, und können ihre Vorschläge verteidigen.

Verwendbarkeit in diesem und in anderen Studiengängen

Dieses Modul ist Grundlage für die weiteren Informatik-Fächer und kann in anderen Informatik-Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

Empfohlen:

- KI-2 Programmierung I
- KI-3 Grundlagen der Informatik
- KI-8 Programmierung II
- KI-11 Computational Logic
- KI-17 KI-Programmierung

Inhalt

- UML Diagramme
 - Anwendungsfalldiagramm,
 - Klassendiagramm,
 - Zustandsdiagramm,
 - Sequenzdiagramm und
 - Aktivitätsdiagramm.
- Werkzeuge f
 ür Software Engineering
 - make als Build-Process-Tool
 - Versionsverwaltung mit Git
 - Virtuelle Umgebungen
- Korrektheit von Software
 - Modultests
 - Property-based testing
 - Logik-basierte Ansätze

Lehr- und Lernmethoden

Seminaristischer Unterricht

- Praktische Übungen
- Gruppenarbeit

Empfohlene Literaturliste

- Martina Seidl, Marion Scholz, Christian Huemer, Gerti Kappel : UML @ Classroom, dpunkt.verlag , 2012.
- Leslie Lamport: *The TLA+ Video Course* , online at https://lamport.azurewebsites.net/video/videos.html.

KI-24 Schlüsselqualifikation 4 (Compliance, Datenschutz, IT-Recht)

Modul Nr.	KI-24
Modulverantwortliche/r	Prof. Dr. Josef Scherer
Kursnummer und Kursname	KI-24 Schlüsselqualifikation 4 (Compliance, Datenschutz, IT-Recht)
Semester	4
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden Selbststudium: 90 Stunden Virtueller Anteil: 30 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

- 1 Die Veranstaltung soll Transparenz und Verständnis für das oft "nebulös" wirkende Thema erzeugen und klare Strukturen und praktische Arbeitshilfen aufzeigen.
- 2 Die Teilnehmer sollen nach der Veranstaltung wissen, verstehen und mit einfachen Worten erklären können,
 - was die relevanten Bestandteile der dargestellten Prozesse / Systeme / Organisation sind,
 - inwieweit es sie selbst betrifft (Rolle, Aufgaben, Verantwortung, Nutzen) und
 - wie die für sie relevanten Prozessabläufe diesbezüglich angereichert werden.

- Außerdem sollen die Teilnehmer befähigt werden, die einschlägigen Anforderungen an ihren eigenen Arbeitsbereich als Ziele transparent zu machen und zu erfüllen.
- Durch Darstellung der Wertbeiträge des Systems / der Prozesse für Unternehmen / Organisation und Mitarbeiter soll Bewusstsein, Interesse und Motivation zum "proaktiven Leben" des Systems erzeugt werden.

Die Teilnehmer sollen im dargestellten Bereich Compliance, Datenschutz und IT-Recht grundlegende Kenntnisse erwerben und in die Lage versetzt werden, praxisrelevante Problemstellungen aus diesem Bereich einer betrieblich organisatorischen Lösung, bei Standardproblemen unter Umständen sogar in Form von Verfahrensanweisungen und Prozessbeschreibungen zuzuführen.

Darüber hinaus wird erwartet, dass der Teilnehmer nach Absolvierung dieses Moduls die relevanten Inhalte mit eigenen Worten verständlich erklären kann.

Nach Absolvieren des Moduls sollen die Teilnehmenden folgende Lernziele erreicht haben:

- Die Teilnehmer sind in der Lage, ein digitalisiertes Integriertes
 Managementsystem im Bereich Compliance, Datenschutz und ITRecht bzw. einschlägige Prozessabläufe zu konzeptionieren und zu
 implementieren und die Aufbau- und Ablauforganisation mit entsprechenden
 Compliance-, Risiko- und IKS-Komponenten anzureichern.
- Die Teilnehmer können Problemfälle über die Methode der richterlichen Falllösungsmethode lösen.
- Die Teilnehmenden können das erworbene Wissen über Soll-Ist-Vergleiche und Handlungsempfehlungen in Unternehmen / Organisationen umsetzen.
- Die Teilnehmer haben die Fähigkeit, Sachverhalte und Aufgabenstellungen dem passenden Bereich im Unternehmen oder Umfeld zuzuordnen und die Schnittstellen zu anderen Funktionen zu erkennen.
- Mittels SWOT-Analysen, Soll-Ist-Vergleichen, etc. sind die Teilnehmer in der Lage, Handlungsempfehlungen zur Steuerung von Governance-(Unternehmensführung und -Überwachung-) Risiken abzugeben.
- Die Teilnehmenden kennen die Methoden von Audits und orientieren sich bzgl. der einschlägigen Themen primär am "Aktuellen Stand von Gesetzgebung und Rechtsprechung (Compliance)" und sekundär am "Anerkannten Stand von Wissenschaft und Praxis". Dabei ziehen sie die ihnen dem Grunde nach bekannten Standards (Regelwerken (internationaler) institutionalisierter Sachverständigen-Gremien) (z.B. DIN/ ISO/COSO/IDW/DIIR/etc.) heran.
- Die Teilnehmer sind in der Lage, unter Beachtung der rechtlichen Rahmenbedingungen, die Vernetzung innerhalb der diversen Unternehmensfunktionen (Führungs-, Kern, - und Unterstützungsprozessthemen) zu verstehen und eine entsprechende Architektur zu konzipieren und zu verbessern.

- SWOT-Analysen und Soll-Ist-Vergleiche im Rahmen von praktischer Tätigkeit im Unternehmen (oder anhand von Case-studies) ermöglichen dem Teilnehmer, im Berufsleben die Organisation von Unternehmen oder Teilbereichen zu verbessern.
- Die Teilnehmer reflektieren die Thematik im internationalen Kontext (z. B. internationales Recht, internationale Standards), die Teilnehmer reflektieren alle Inhalte unter dem Aspekt der Digitalen Transformation und der Modellierung als Prozessabläufe.

Wertbeitrag des Moduls / der Lehrveranstaltung

Mit wenig zeitlichem Aufwand erhalten die Teilnehmer

- von Dozenten / Coaches mit hoher einschlägiger persönlicher, fachlicher und p\u00e4dagogischer Kompetenz
- Transparenz in leicht einprägsamer Form über die an sie und die Organisation gerichtete Anforderungen sowie
- pragmatische und strukturierte Umsetzungsempfehlungen
- anhand von Checklisten, Mustern, Prozessablaufbeschreibungen

und

- anhand von virtuellen Kursen mit vielen kurzen Folgen.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für diesen Studiengang

Dieses Modul *Compliance, Datenschutz und IT-Recht* zählt zu den Schlüsselqualifikationen.

Verwendbarkeit des Moduls für andere Studiengänge

Diese Modul

Compliance, Datenschutz und IT-Recht

kann in *allen* sonstigen technischen, rechtlichen, wirtschaftspsychologischen und betriebswirtschaftlichen Studiengängen verwendet werden, da das Wissen über Governance, Compliance und Corporate Social Responsibility / Nachhaltigkeit sowie die Rechte und Pflichten von Managern, sonstigen Führungskräften und Mitarbeitern nahezu unverzichtbar für "ordentliches und gewissenhaftes" Management ist.

Zugangs- bzw. empfohlene Voraussetzungen

Dieses Modul baut auf die Inhalte der einschlägigen Aufsätze von *Scherer/Fruth/N.N.* auf: Vgl. hierzu scherer-grc.net/publikationen und die Bücher *Scherer/Fruth* (Hrsg.):

- Scherer/Fruth/Grötsch (Hrsg.), "Digitalisierung, Nachhaltigkeit und Unternehmensführung 4.0" (GRC) (analog), 2021, ISBN-Nr. 978-3-947301-27-0, zum Preis von 15 EUR

- Scherer/Fruth (Hrsg.), "Digitalisiertes Integriertes Risiko-Managementsystem mit Governance, Risk und Compliance (GRC)", (analog), 2019, ISBN-Nr. 978-3-947301-21-8, zum Preis von 15 EUR
- Scherer, "Management reloaded" "GRC & ESG in Strategy & Performance" (GRC & ESG in S & P), RiskNet, 2021 (zum kostenlosen Download auf scherer-grc.net).
- Scherer / Romeike / Grötsch, Unternehmensfürhung 4.0: CSR / ESG, GRC
 Digitalisierung integrieren, RiskNet, 2021 (zum kostenlosen Download auf scherer-grc.net).

Weitere einführende / begleitende Literatur:

Scherer / Fruth (Hrsg.):

- Integriertes Managementsystem "on demand", 2018
- Integriertes Compliance-Managementsystem, 2018
- Integriertes Qualitäts-Managementsystem, 2018
- Handbuch Integriertes Personal-Managementsystem, 2018

Inhalt

Teil Scherer (blended learning / virtuell): 2 SWS Classic vhb: Governance, Risk und Compliance im Bereich Personal / HR

- Folge 30-45: Rechtssichere, prozessorientierte Unternehmensorganisation
 - Komponente K11 Organisatorischer Rahmen (unternehmensweit) Rechtssichere, prozessorientierte Unternehmensorganisation
 - Komponente K11 Unternehmensweiter organisatorischer Rahmen
 Einführung Teil I: Definitionen, Tools & Methoden, Komponenten,
 Konzeptionierung
 - Komponente K11 Unternehmensweiter organisatorischer Rahmen -Einführung Teil II: Rechtliche Rahmenbedingungen und Standards
 - Komponente K11 Unternehmensweiter organisatorischer Rahmen -Einführung Teil III: "Die prozessorientierte Organisation"
 - Komponente K11/1 Unternehmensweiter organisatorischer Rahmen / Gesellschaftsrechtlich angemessene Unternehmens(gruppen)struktur
 - Komponente K11/2 Unternehmensweiter organisatorischer Rahmen / Rechtssichere Organigramme
 - Komponente K11/3 Unternehmensweiter organisatorischer Rahmen / Schnittstellenmanagement
 - Komponente K11/4 Unternehmensweiter organisatorischer Rahmen / Rechtssichere Stellenbeschreibungen
 - Komponente K11/5 Unternehmensweiter organisatorischer Rahmen / Rechtssicheres Interaktionsmanagement

- Komponente K11/6 Unternehmensweiter organisatorischer Rahmen / Rechtssichere Delegation
- Komponente K11/7 Unternehmensweiter organisatorischer Rahmen / Rechtssichere Prozessbeschreibungen
- Komponente K11/8 Unternehmensweiter organisatorischer Rahmen / Wirksame Aufsichts- bzw. Kontrollmechanismen
- Komponente K11/9 Unternehmensweiter organisatorischer Rahmen / Implementiertes und wirksames Informations- und Kommunikationsmanagement
- Komponente K11/10 Unternehmensweiter organisatorischer Rahmen / Implementiertes und wirksames Dokumentationsmanagement
- Komponente K11/11 Unternehmensweiter organisatorischer Rahmen / Unterstützendes (Integriertes) Managementsystem
- Komponente K11/12 Unternehmensweiter organisatorischer Rahmen / Angemessene (Personal-) Ressourcen
- Folge 63-75: Risikomanagement im Bereich Personal
 - Komponente K29 Installation eines Risikomanagement-Prozesses mit "lines of defense"-Modell
 - K29/1: Top Risiko: Hohe Fluktuation
 - K29/2: Top Risiko: Zu hohe Personalkosten
 - K29/3: Top Risiko: Kriminelles Verhalten von Mitarbeitern
 - K29/4: Top Risiko: Fehlende Motivation der Mitarbeiter
 - K29/5: Top Risiko: Haftungs- und Prozessrisiken aufgrund des komplexen und sich ständig ändernden Arbeitsrechts
 - K29/6: Top Risiko: Wegfall von Leistungsträgern
 - K29/7: Top Risiko: Zu wenig qualifizierte Mitarbeiter
 - K29/8: Top Risiko: Fehlerhafte Personalbedarfsprognose
 - K29/9: Top Risiko: Fehleinschätzung von technologischem Wandel und Trends
 - K29/10: Top Risiko: Führungsrisiko
 - K29/11: Top Risiko: Einsatz von Fremdressourcen
 - Komponente K30 Installation eines Zielabweichungs-(Verstoß-) Erkennungs- und Reaktions-Prozesses
- Folge 76-83: Personalprozesse
 - K31 / 8 Personalprozesse: Einführung
 - K31 / 8-1 Personalprozesse: 1. Personalplanung
 - K31 / 8-2 Personalprozesse: 2. Personalakquise
 - K31 / 8-3 Personalprozesse: 3. Personalverwaltung
 - K31 / 8-4 Personalprozesse: 4. Personalführung
 - K31 / 8-5 Personalprozesse: 5. Personalentwicklung
 - K31 / 8-6 Personalprozesse: 6. Personalfreisetzung

- K31 / 8-7 Personalprozesse: 7. Personalcontrolling
- Folge 84-95: Arbeitsrecht
- K31 / 10-5.A.3 Arbeitsrecht und Compliancemanagement im Bereich Personal / 1. Einführung
- K31 / 10-5.A.3 Arbeitsrecht / 2. Rechtliche Grundlagen des Arbeitsrechts
- K31 / 10-5.A.3 Arbeitsrecht / 3. Grundbegriffe
- K31 / 10-5.A.3 Arbeitsrecht / 4. Die Begründung des Arbeitsverhältnisses
- K31 / 10-5.A.3 Arbeitsrecht / 5. Arbeitsentgelt ohne Arbeitsleistung
- K31 / 10-5.A.3 Arbeitsrecht / 6. Beendigung des Arbeitsverhältnisses durch Ablauf einer Befristung
- K31 / 10-5.A.3 Arbeitsrecht / 7. Beendigung des Arbeitsverhältnisses durch Kündigung
- K31 / 10-5.A.3 Arbeitsrecht / 8. Allgemeiner Kündigungsschutz
- K31 / 10-5.A.3 Arbeitsrecht / 9. Kollektives Arbeitsrecht: Definitionen
- K31 / 10-5.A.3 Arbeitsrecht / 10. Kollektives Arbeitsrecht:
 Tarifvertragsrecht
- K31 / 10-5.A.3 Arbeitsrecht / 11. Kollektives Arbeitsrecht: Arbeitskampfrecht
- K31 / 10-5.A.3 Arbeitsrecht / 12. Kollektives Arbeitsrecht: Betriebsverfassungsrecht

OPEN vhb: Unternehmensführung 4.0: Der Ordentliche Kaufmann und sein digitalisiertes Integriertes Managementsystem mit GRC

Kapitel 1: "Digital, fit, proper, sustainable, successful & safe: Der Ordentliche Kaufmann 4.0!"

- 1. Einführung: "Auf einen Blick und Überblick": Die Fakten und die Story
- 2. "Das Richtige richtig tun": Der "Ordentliche Kaufmann 4.0": OK!
- 3. Enthaftende Wirkung und sonstige Wertbeiträge eines digitalisierten Integrierten Managementsystems 4.0
- 4. Welche(s) Managementsystem(e) und wieviel(e) Standard(s) für Digitalisierung und GRC braucht der Manager?
- 5. Begriffe, die der Ordentliche Kaufmann und seine Mitarbeiter kennen müssen
- 6. Was heißt Digitalisierung von Geschäftsprozessen und Anreicherung mit GRC Methoden und Tools?
- 7. Unternehmens-, Umfeld-, interested-parties-, Risiko- und SWOT-Analyse: Alle wollen das Gleiche: Keine Schwächen bei Digitalisierung und GRC
- 8. "Ready for take off: Der neue Tone from the Top im Unternehmensflugschiff"
- 9. Governance: Interaktion der Organe, gewissenhafte Unternehmensführung und überwachung
- 10. "Hard Facts": Worum hat sich der Ordentliche Kaufmann zu kümmern und welche Sachkenntnisse sind gefragt?

- 11. Wie Top-Manager ihre wichtigste Ressource Zeit auf ihre wichtigsten Aufgaben verteilen sollten
- 12. "Wir nicht so einfach verbesserlich!" Der "Habitus" des "Ordentlichen Kaufmanns 4.0": Wissens-, Soziales, Kulturelles, Sprachliches, Physisches, Psychisches, Digitales Kapital und Softskills
- 13. Managerhaftung: Zivil- und strafrechtliche Haftung der Organe und (Sonder-)Beauftragten
- 14. Der Manager-Risikokoffer und die Haftungs-Firewall
- 15. Neue Ziele in einer neuen Welt
- 16. (Digitalisierung-) Vision / -Ziele / -Strategie / -Planung
- 17. "Warum klappts oft nicht?": Homo irrationalis versus fit & proper:
- Verhaltensökonomie und Wirtschaftspsychologie
- 18. Umsetzung von (Digitalisierungs-) Maßnahmen mit begleitender Steuerung und Überwachung

Teil Hofmeyer (1 SWS):

Seit 25. Mai 2018 gelten in allen Mitgliedstaaten der Europäischen Union neue Datenschutzregeln. Mit der Reform soll sichergestellt werden, dass in allen Mitgliedstaaten derselbe Datenschutzstandard besteht. Da in Deutschland bereits hohe Anforderungen an den Datenschutz galten, führen die neuen Vorschriften zwar zu zahlreichen formellen Änderungen, eine inhaltliche Verschärfung der Anforderungen ging mit der Reform jedoch insgesamt nicht einher.

Durch ein im Unternehmen etabliertes Datenschutzkonzept bzw.

Datenschutzmanagementsystem kann die Einhaltung der rechtlichen Vorgaben nachgewiesen und überprüft werden. Die praktische Etablierung verlangt detaillierte Informationen aus den Abteilungen und Organisationseinheiten des Unternehmens und bietet bei erfolgreichem Einsatz Mehrwert im Hinblick auf mögliche Überprüfungen durch die Datenschutz- bzw. Aufsichtsbehörde.

Die meisten Risiken im IT-Betrieb haben - unabhängig von der gewählten Betriebsform - ihren Ursprung in Unzulänglichkeiten, verschiedenartigsten Fehlern und Ausfällen. Diese können ihren Ursprung auf den folgenden Gebieten haben:

- Mitarbeiter, Kunden und weitere Partner
- falsche, unvollständige oder veraltete Daten (bspw. Parameter, Konfigurationen, Versionen)
- Anwendungen und die IT-Infrastruktur
- IT-Prozesse und die gesamte IT-Organisation
- IT-Umfeld (Gebäude, Standort, weitere Rahmenbedingungen)

Einen vollständigen Schutz gegenüber IT-Risiken kann es nicht geben, da die Risikofaktoren zu mannigfaltig sind und der Faktor Mensch dabei eine große, nicht eindeutig kalkulierbare Rolle spielt. Ein effektives Risiko- und Compliance- Management in der Datenverarbeitung eines Unternehmens kann jedoch einen Totalausfall oder

bestandsgefährdende Verluste von Daten verhindern und somit die Kosten durch Schadens- und Haftungsvermeidung senken.

Lernziele:

- 1 Einführung in die EU-DSGVO + BDSG-neu
- 2 Konsequenzen aus der EU-DSGVO
- 3 Struktur und Verantwortlichkeit
- 4 Verzeichnis von Verarbeitungstätigkeiten
- 5 Einbindung von externen Dienstleistern
- 6 Informationspflichten und Betroffenenrechte
- 7 TOMs
- 8 Umgang mit Datenschutzverstößen
- 9 Datenschutz im Unternehmens-Alltag

Teil Donnert (1 SWS):

Die Teilnehmer können / kennen

- die grundlegende Definition von IT-Sicherheit erläutern,
- die Unterschiede von Datenschutz-, IT-Sicherheit und Informationssicherheit (IS)beschreiben,
- erklären, warum IS erforderlich ist,
- die Schutzziele der IS benennen,
- die grundlegenden Unterschiede der verschiedenen Managementsysteme erläutern,
- die verschiedenen Bedrohungen in der IS beschreiben,
- Sensibilisierungsmaßnahmen, um die IS zu verbessern.
- Sie sind in der Lage, IS-Risiken zu managen.

Lehr- und Lernmethoden

Seminaristischer Unterricht, Übungen, Falllösungen anhand von Beispielen aus der (höchst-) richterlichen Rechtsprechung, Selbststudium, studentische Referate und Studienarbeiten.

Durch einen in der Lehrveranstaltung vermittelten und von Teilnehmern verstandenen multifunktionalen, interdisziplinären Ansatzes (Recht, BWL, Technik, Wirtschaftspsychologie, Verhaltensökonomie) werden den Teilnehmern unterschiedliche Sichtweisen und Erkenntnisse bzgl. der Subjekte und Objekte des (Wirtschafts-) Lebens sowie auch bzgl. der eigenen Person vertraut.

Besonderes

Das Modul enthält virtuelle Anteile:

2 SWS:

Prof. Dr. Josef Scherer:

vhb-Kurs:

"Integriertes Managementsystem im Bereich Personal/HR mit Governance, Risk und Compliance", Folgen 30-45 (Rechtssichere, prozessorientierte Unternehmensorganisation) und Folgen 63-95 (Risikomanagement im Bereich Personal, Personalprozesse, Arbeitsrecht)

OPEN vhb-Kurs:

"Unternehmensführung 4.0 mit Governance, Risk und Compliance" - Der Ordentliche Kaufmann und sein digitalisiertes Integriertes Managementsystem mit GRC. Ganzer Kurs!

Empfohlene Literaturliste

Einführende Literatur

Scherer, Good Governance und ganzheitliches, strategisches und operatives Management: Die Anreicherung des "unternehmerischen Bauchgefühls" mit Risiko-, Chancen- und Compliancemanagement, in: Corporate Compliance Zeitschrift (CCZ), 6/2012, S. 201-211 (zum kostenlosen Download auf www.scherer-grc.net/publikationen). Scherer, "Management reloaded" - "GRC in Strategy & Performance" (GRC in S & P), 2021 (zum kostenlosen Download auf www.scherer-grc.net/publikationen)

Kursbegleitende Literatur

Bücher:

Scherer/Fruth (Hrsg.), Digitalisierung, Nachhaltigkeit und "Unternehmensführung 4.0", 2021

Scherer/Fruth (Hrsg.), Handbuch: Integriertes Personal-Managementsystem, 2018 Scherer/Fruth (Hrsg.), Handbuch: Integriertes Compliance-Managementsystem, 2018

Aufsätze (zum kostenlosen Download unter: Scherer-grc.net/Publikationen):

Scherer, "Management reloaded" - "GRC & ESG in Strategy & Performance" (GRC & ESG in S & P), RiskNet, 2021.

Scherer / Romeike / Grötsch, Unternehmensfürhung 4.0: CSR / ESG, GRC & Digitalisierung integrieren, RiskNet, 2021.

Scherer, "Healthcare und Pflege 4.0" - Die digitale Transformation von Compliance, Risikomanagement und Standards im Gesundheitswesen, Journal für Medizin- und Gesundheitsrecht, 1/2019, S. 33 ff.

Scherer, "Healthcare und Pflege 4.0" - Die digitale Transformation von Compliance, Risikomanagement und Standards im Gesundheitswesen, Teil 2: Organhaftung und Beweislast bei Verstoß gegen Regeln der Technik, Journal für Medizin- und Gesundheitsrecht, 2/2019, S. 109 ff.

Scherer, "Healthcare und Pflege 4.0" - Die digitale Transformation von Compliance, Risikomanagement und Standards im Gesundheitswesen, Teil 3: Integration von

Standards in digitalisierte, vernetzte Managementsysteme, Journal für Medizin- und Gesundheitsrecht, 3/2019, S. 171 ff.

Scherer, "Healthcare und Pflege 4.0" - Die digitale Transformation von Compliance, Risikomanagement und Standards im Gesundheitswesen, Teil 4: "Digital Governance": "Wirksamkeit" eines Integrierten GRC-Managementsystems durch Digitalisierung und "nudges", 4/2019, S. 171 ff.

Scherer, "Unternehmensführung 4.0" in der Health-Care- und Pflege-Branche: Der "Ordentliche Kaufmann 4.0" und sein digitalisiertes Integriertes GRC-Managementsystem: "Das Richtige richtig tun in unsicheren Zeiten", Journal für Medizin- und Gesundheitsrecht, 1/2020, S. 34 ff.

Scherer, "Digital, fit & proper": Neue Anforderungen an Management und Mitarbeiter durch digitale Transformation und Corona-Krise, Journal für Medizin- und Gesundheitsrecht, 2/2020, S. 102 ff.

Scherer, Resilienz & Zukunftsfähigkeit: Aktuelle Anforderungen an Unternehmensführung (GRC), Digitalisierung und Nachhaltigkeit, Journal für Medizin- und Gesundheitsrecht, 03/2020, S. 165 ff.

Scherer / Grötsch, Gemeinsamkeiten von Nachhaltigkeit (ESG/CSR) und Governance (GRC) im Healthcare- und Pflegebereich, Journal für Medizin- und Gesundheitsrecht, 1/2021.

Vertiefende Literatur

Scherer/Fruth (Hrsg.), Digitalisiertes Integriertes Risiko-Managementsystem, 2019

Scherer/Fruth (Hrsg.), Handbuch: Integriertes Managementsystem (IMS), 2018

Scherer/Fruth (Hrsg.), Handbuch: Integriertes Qualitäts-Managementsystem, 2018

Scherer/Fruth (Hrsg.), Handbuch: Integriertes Product-Compliance-,

Vertragsmanagement und Qualitätsmanagement, 2018

Scherer/ Fruth (Hrsg.), Geschäftsführer-Compliance, Praxiswissen zu Pflichten, Haftungsrisiken und Vermeidungsstrategien, 2009

Scherer/ Fruth (Hrsg.), Gesellschafter-Compliance, Praxiswissen zu Pflichten, Haftungsrisiken und Vermeidungsstrategien, 2011

Außerdem zahlreiche einschlägige Aufsätze zum kostenlosen Volltext-Download unter: www.govsol.de/Publikationen

KI-25 Praxismodul

Modul Nr.	KI-25
Modulverantwortliche/r	Prof. Dr. Patrick Glauner
Kursnummer und Kursname	KI-5101 Betriebspraktikum
	KI-5102 Praxisergänzende Vertiefung 1
	KI-5103 Praxisergänzende Vertiefung 2
Lehrende	Prof. Dr. Udo Garmann
	Prof. Dr. Patrick Glauner
Semester	5
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	PLV, Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	30
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 840 Stunden
	Gesamt: 900 Stunden
Gewichtung der Note	30/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ziel ist es, Praxiserfahrung im industriellen Umfeld zu sammeln.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden verstehen die Konzepte der professionellen Erstellung von KI-Software. (2 - Verstehen)

Methodenkompetenz

- Die Studierenden haben die Fähigkeit, hochqualitative KI-Programme unter Einsatz moderner Werkzeuge zu erstellen. (3 - Anwenden)

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene KI-Ideen umsetzen und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

 Die Studierenden sind damit auch in der Lage, KI-Programme von Kollegen zu verstehen, zu kritisieren und zu komplementieren. (5 -Beurteilen)

Verwendbarkeit in diesem und in anderen Studiengängen

- Lehrveranstaltung höherer Semester
- Bachelor-Arbeit

Zugangs- bzw. empfohlene Voraussetzungen

Der Eintritt in das praktische Studiensemester setzt voraus, dass mindestens 70 ECTS-Punkte erzielt wurden

Inhalt

Das praktische Studiensemester ist integraler Bestandteil des Studiums. Es wird von der Hochschule betreut und von Lehrveranstaltungen nach Maßgabe des Studienplans begleitet. Die Praktika sollen in erster Linie in Unternehmen im In- und Ausland durchgeführt werden. Ziel ist es, Praxiserfahrung im industriellen Umfeld zu sammeln. Die Studierenden haben die Möglichkeit, während des Studiums verschiedene Unternehmen kennen zu lernen.

Lehr- und Lernmethoden

- Betriebspraktikum
- Zwei begleitende, einwöchige Blockveranstaltungen

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert:

Die dualen Studierenden verbringen ihr Praktikum im Partnerunternehmen.

Zudem haben sie durch die begleitenden Blockveranstaltungen die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch

praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

Keine

KI-26 Seminar Aktuelle Themen der KI

Modul Nr.	KI-26
Modulverantwortliche/r	Prof. Dr. Thomas Ewender
Kursnummer und Kursname	KI-26 Seminar Aktuelle Themen der KI
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Ziel des Moduls ist es einen Überblick über aktuelle Themen der künstlichen Intelligenz zu vermitteln. Dies geschieht durch die Analyse von aktuellen wissenschaftlichen Arbeiten und der Zusammenfassung und Vorstellung der Ergebnisse im Plenum. Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

- 1 Fachkompetenz
 - Die Studierenden verstehen die aktuellen wissenschaftlichen Trends und Themen im Bereich künstliche Intelligenz. (2 Verstehen)
- 2 Methodenkompetenz
 - Die Studierenden sind in der Lage wissenschaftliche Arbeiten anderer zu analysieren, zu verstehen und für Andere verständlich aufzuarbeiten. (4 Analysieren)
- 3 Persönliche Kompetenz
 - Die Studierenden generieren Zusammenfassungen aktueller wissenschaftlicher Arbeiten im Bereich der künstlichen Intelligenz im Team. (6 - Kreieren)

4 Sozialkompetenz

- Die Studierenden können im Team erarbeitetes Wissen präsentieren und so anderen Studierenden vermitteln. (2 Verstehen)
- Die Studierenden diskutieren die Ergebnisse Ihrer wissenschaftlichen Recherche und können diese beurteilen und verteidigen. (5 -Evaluieren)

Verwendbarkeit in diesem und in anderen Studiengängen

Modul kann für die Bachelorarbeit und in anderen Studiengängen verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

KI-1 Mathematik I

KI-7 Mathematik II

KI-9 Algorithmen und Datenstrukturen

KI-11 Computational Logic

KI-17 KI-Programmierung

KI-23 Software Engineering

Inhalt

Die Inhalte sind abhängig von den aktuellen Themen und Entwicklungen des Bereichs künstliche Intelligenz. Im Sommersemester 2022 wurden unter Anderem folgende Themen besprochen:

- AutoML
- Natural Language Processing
- LSTMs und GRUs
- Autoencoder
- Generative Advesarial Networks
- Deep Learning Frameworks

Zusätzlich zu den aktuellen wissenschaftlichen Themen wird es eine Einführung ins wissenschaftliche Arbeiten sowie Gastvorträge zum Einsatz von künstlicher Intelligenz in der Wirtschaft und Wissenschaft geben.

Lehr- und Lernmethoden

seminaristischer Unterricht, Recherche, Erarbeitung und Präsentation von aktuellen Themen der KI, praktische Übungen, Gastvorträge.

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

Artikel aus u.a. folgenden Journalen werden bearbeitet:

- Proceedings of the IEEE/CVF International Conference on Computer Vision
- Neural computation, MIT Press
- Natural Language Engineering, Cambridge University Press
- Knowledge-Based Systems
- Elsevier Journal of Ubiquitous Computing and Communication Technologies (UCCT)
- Advances in neural information processing systems

KI-27 Autonome Robotik

Modul Nr.	KI-27
Modulverantwortliche/r	Prof. Dr. Isabel Hübener
Kursnummer und Kursname	KI-27 Autonome Robotik
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Nach erfolgreichem Abschluss dieser Lerneinheit können die Studierenden die folgenden Kompetenzen erwerben.

Fachliche Kompetenzen

- die Herausforderungen von moderner autonomer Robotik erklären
- die Voraussetzungen (z.B., Sensorik, Aktorik) für einfache Robotikprobleme zusammenstellen
- grundlegende Lokomotionsverfahren auflisten und sie gegenüberstellen
- Freiheitsgrade von gängigen mobilen Roboterplattformen darstellen und die Vor- und Nachteile dieser Plattformen vergleichen
- grundlegende Sensorarten beschreiben
- die Kenndaten von verschiedenen Sensoren gegenüberstellen und die Anwendbarkeit für ein einfaches Szenario schätzen
- die Fehlerfortpflanzung bei verrauschten Sensordaten berechnen
- Lokalisierung und Kartenerstellung grundlegend erklären

- grundlegende Konzepte von Robot Operating System (ROS) darstellen Methodische Kompetenzen
 - direkte und inverse Kinematik von gängigen Roboterplattformen berechnen
 - grundlegende Wegplanungs- und Taskausführungsverfahren beschreiben
 - eine Lösung für eine spielerische Robotikaufgabe sowohl in der Simulation als auch in der realen Welt entwickeln

Persönliche Kompetenzen

 mit Hilfe von praktischen Roboteraufgaben aktiv nach eigenen Lösungsmethoden suchen und diese selber studieren

Verwendbarkeit in diesem und in anderen Studiengängen

Das Modul kann für die Bachelorarbeit und in anderen Studiengängen, z.B. Ba. Maschinenbau verwendet werden.

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

KI-1 bis KI-12

Inhalt

Seminaristischer Unterricht

- Einführung
 - Intelligenz bei Robotern
 - Herausforderungen von autonomer mobiler Robotik und Manipulation
- Lokomotion und Manipulation
 - Beispiele
 - statische und dynamische Stabilität
 - Freiheitsgrade
- Direkte und inverse Kinematik
 - Koordinaten- und Bezugssysteme
 - direkte Kinematik von Beispielstrukturen
 - Berechnung von direkter Kinematik mit Denavit-Hartenberg-Transformation
 - inverse Kinematik von Beispielstrukturen
 - Berechnung von inverser Kinematik mit Jacobi-Matrizen
- Wegplanung
 - Representation von Karten
 - graphenbasierte Planungsalgorithmen
 - Sampling-basierte Wegplanung

- Pfadglättung
- Taskausführung
 - Zustandsautomaten
 - Behavior Tree
 - Missionsplanung
- Sensorik
- Merkmalextraktion
- Unsicherheit und Fehlerfortpflanzung
- Lokalisierung
- Kartenerstellung
- simultane Positionsbestimmung und Kartenerstellung (SLAM)

Lehr- und Lernmethoden

- Seminaristischer Unterricht
- Gruppenarbeit
- Recherche mit Ergebnispräsentation

Besonderes

Empfohlene Literaturliste

- #Nikolaus Correll, Bradley Hayes, Christoffer Heckman, and Alessandro Roncone Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms v2.0, December 1, 2021 Copyright MIT press àwww
- #Bruno Siciliano, Oussama Khatib (Eds.) Springer Handbook of Robotics,
 Springer-Verlag Berlin Heidelberg 2016
- #Prof. Dr.-Ing. Thomas Schlegl, Handhabungstechnik und Robotik, Skriptum zur Vorlesung Ostbayerische Technische Hochschule Regensburg 2017/18
- #Youtube Video MIT Lecture underactuated robotics

KI-28 KI-Projekt

Modul Nr.	KI-28
Modulverantwortliche/r	Prof. Dr. Patrick Glauner
Kursnummer und Kursname	KI-28 KI-Projekt
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 30 Stunden Selbststudium: 120 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Dieser Kurs bietet den Studenten praktische und reale Erfahrungen in der KI-Entwicklung. Sie werden die Möglichkeit haben, an realen Datensätzen zu arbeiten, um reale Probleme zu lösen. Da diese Projekte in Gruppen durchgeführt werden, haben die Studierenden auch die Möglichkeit, professionelle Softwareentwicklungswerkzeuge für die Zusammenarbeit zu nutzen.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden analysieren Problemstellungen aus Unternehmen im Hinblick auf mögliche Lösungen durch KI-Systeme. (4 Analysieren)
- Die Studierenden beurteilen, welche KI-Techniken zur Lösung von Fragestellungen in Unternehmen am geeignetsten sind. (5. Beurteilen)

Methodenkompetenz

 Die Studierenden erschaffen eigene KI-basierte Lösungen für Fragestellungen in Unternehmen und implementieren diese prototypisch durch geeignete Software. (6 - Erschaffen)

Persönliche Kompetenz

- Die Studierenden können eigene KI-Syteme entwickeln und gegenüber konkurrierenden Ansätzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

- Die Studierenden können eigene Ergebnisse präsentieren und mit anderen Studierenden über erarbeitete Lösungen diskutieren. (2 - Reagieren)

Verwendbarkeit in diesem und in anderen Studiengängen

KI-36 Bachelorarbeit

Zugangs- bzw. empfohlene Voraussetzungen

- Künstliche Intelligenz
- Programmierung
- Grundlagen Mathematik

Inhalt

- Durchführung von High-Tech-Projekten in den Bereichen künstliche Intelligenz, maschinelles Lernen, Computer Vision, Verarbeitung natürlicher Sprache und anderen.
- Die Projekte können z. B. von Kaggle (http://www.kaggle.com/) oder aus anderen Quellen ausgewählt werden oder in Zusammenarbeit mit einem Industriepartner durchgeführt werden.
- Nutzung moderner High-End-Hardware, wie GPU-Cluster und Cloud-Dienste.
- Nutzung eines agilen Prozess-Frameworks wie Scrum.
- Verstehen und Verwenden moderner industrieller
 Softwareentwicklungswerkzeuge wie Work Package Tracker, Code-Revisionssysteme, Debugger, Profiler und andere.
- Präsentation von F&E-Ergebnissen vor Interessenvertretern auf verschiedenen Ebenen, wie Kommilitonen, Fakultätsmitgliedern, Praktikern und Führungskräften.

Lehr- und Lernmethoden

- Projektbesprechungen

- Vorlesungen

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

- C. Bishop and H. Bishop, "Deep Learning: Foundations and Concepts", Springer, 2024.
- S. Chacon and B. Straub, " Pro Git ", Apress, 2nd edition, 2014.
- I. Goodfellow, Y. Bengio and A. Courville, " Deep Learning ", MIT Press, 2016.
- C. Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development ", Prentice Hall, 3rd edition, 2004.

KI-29 Deep Learning/Big Data

Modul Nr.	KI-29
Modulverantwortliche/r	Prof. Dr. Isabel Hübener
Kursnummer und Kursname	KI-29 Deep Learning/Big Data
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden
	Selbststudium: 90 Stunden
	Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Das Ziel dieses Kurses ist es, den Studierenden eine Einführung in die Bereiche Deep Learning und Big Data zu vermitteln. Die Studierenden erwerben solide Grundlagen für den Entwurf und die Implementierung von Big Data-Systemen und die Verwendung großer Datensätze für das Trainieren von Deep Learning-Modellen. Sie werden auch praktisch lernen, wie man industrielle Werkzeuge für Deep Learning und Big Data verwendet. Darüber hinaus werden sie die Grenzen von Big Data-Ansätze kennenlernen und verstehen, wie sie typische Probleme in Big Data, wie z.B. Datenqualität und Biase, erkennen und lösen können. Als Ergebnis werden sie in der Lage sein, an realen Problemen zu arbeiten, die nicht nur KI-Kenntnisse erfordern, sondern auch ein Fachwissen darüber, wie Infrastrukturen, Frameworks, Bibliotheken und Werkzeuge für Deep Learning und Big Data genutzt werden können.

Im Einzelnen haben die Studierenden nach Abschluss des Moduls folgende Lernergebnisse erreicht:

Fachkompetenz

- Die Studierenden verstehen die Konzepte der gängigsten Ansätze aus Big Data und Deep Learning. (2 - Verstehen)
- Die Studierenden verstehen alle Bauteile eines Feed Fordward Netzes (2 Verstehen) und können diese in Python implementieren (3 Anwenden)

Methodenkompetenz

- Die Studierenden haben die Fähigkeit, hochqualitative Programme unter Einsatz von Big Data- und Deep Learning-Technologien zu erstellen. (3 -Anwenden)
- Die Studierenden sind in der Lage verschiedene Architekturen neuronaler Netzer miteinander zu vergleichen (4 Analysieren) und zu entscheiden welche Architektur für ein Problem geeignet ist (5 Evaluieren).

Persönliche Kompetenz

 Die Studierenden k\u00f6nnen eigene Verfahren umsetzen und gegen\u00fcber konkurrierenden Ans\u00e4tzen verteidigen. (6 - Erschaffen)

Sozialkompetenz

 Im Rahmen der Lehrveranstaltung finden Programmierübungen statt.
 Die Studierenden sind damit auch in der Lage, Programme anderer Studierenden zu verstehen, zu kritisieren und zu komplementieren. (5 -Beurteilen)

Verwendbarkeit in diesem und in anderen Studiengängen

Unter anderem:

- KI-Projekt
- Bachelor-Arbeit

Zugangs- bzw. empfohlene Voraussetzungen

empfohlen:

- KI-1 Mathematik 1
- KI-7 Mathematik 2
- KI-8 Programmierung 2
- KI-17 KI-Programmierung

Inhalt

Deep Learning-Teil:

- Gemeinsame Programmierung eines neuronalen Netzes von Grund auf in folgenden Schritten:
 - Einzelnes Neuron
 - Schichten von Neuronen

- Aktivierungsfunktionen + Softmax
- Loss Functions
- Optimierung Wiederholung Mathematik: Ableitungen, Partielle Ableitung, Kettenregel
- Backpropagation
- Optimierungsverfahren
- Overfitting und wie man es vermeidet
- Klassifikationsbeispiel
- Regression
- Theorie und Praxis komplexerer Netze mit Keras:
 - Convolutional Neural Nets f
 ür Bilderkennung
 - Long Short Term Memory Zellen f
 ür die Textanalyse

Big Data-Teil:

- Einführung: 3 Vs, historischer Abriss von Big Data, ausgewählte Anwendungsfälle von Big Data
- Parallelität: Parallelism und Concurrency, Erstellen von Threads, Global Interpreter Lock (GIL)
- Big Data-Architekturen: verteilte Systeme, MapReduce, CAP-Theorem, Beschleunigung durch GPUs und FPGAs
- Big Data, Small Data, All Data: Datenqualität, Biase in Big Data, Small Sample Size-Probleme
- Unsicherheit beim Lernen: Konfidenzintervalle und statistische Tests,
 Gaußsche Prozesse, Conformal Prediction, Modellkalibrierung
- MLOps: Projektlebenszyklus, Herausforderungen, Betrieb, Hauptkomponenten, Pipelines, bewährte Verfahren
- Big Data für NLP: Embeddings, aktuelle Fortschritte im NLP, Transformer
- Quantencomputing: Qubits, Quantengatter, Quantencomputer, Quantenalgorithmen
- Ausgewählte Big Data-Infrastrukturen, -Frameworks, -Bibliotheken und -Werkzeuge

Lehr- und Lernmethoden

- Vorlesungen
- Seminare
- Diskussion von wissenschaftlichen Artikeln und aktuellen Nachrichten
- Übungen und Case Studies, einschließlich Rechnerübungen

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul durch die enge Verzahnung von theoretischen Lehrinhalten und praktischen Erfahrungen

gefördert. Studierende haben die Möglichkeit, das im Unterricht Erlernte direkt in ihrem beruflichen Umfeld anzuwenden und zu reflektieren. Dies ermöglicht einen effektiven Kompetenzerwerb, da theoretisches Wissen durch praktische Anwendung vertieft und gefestigt wird. Darüber hinaus werden in der Regel die Inhalte der Prüfungsleistung auf die Praxisinhalte im Betrieb abgestimmt.

Empfohlene Literaturliste

- E. Charniak, "Introduction to Deep Learning", MIT Press, 2018.
- F. Chollet, " Deep learning with Python ", Simon and Schuster, 2021.
- H. Kinsley and D. Kukie#a, "Neural Networks from Scratch in Python ", NNFS.io, 2020.
- C. Bishop and H. Bishop, "Deep Learning: Foundations and Concepts", Springer, 2024.
- A. Petrov, " Database Internals: A Deep Dive into How Distributed Data Systems Work ", O'Reilly Media, 2019.
- E. Raj, " Engineering MLOps: Rapidly build, test, and manage production-ready machine learning life cycles at scale ", Packt, 2021.
- S. Sakr and A. Zomaya (Eds.), "Encyclopedia of Big Data Technologies ", Springer, 2019.

KI-30 FWP1

Modul Nr.	KI-30
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-30 FWP1
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	FWP
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In den FWP-Modulen können die Studierenden ein Fach frei aus einem vorgegebenen Fächerkatalog wählen. Die Inhalte sind fachbezogen zum Studium z.B. aus den Themengebieten Informatik, KI, Cyber Security oder sonstige einschlägige Kurse. Dies ermöglicht eine individuelle Schwerpunktsetzung und Vertiefung.

Bei den FWP-Modulen 1 & 2 ist besteht darüber hinaus auch die Möglichkeit *in Absprache mit dem Studiengangskoordinator* fachfremde Fächer aus anderen Fakultäten zu wählen.

Fach- und Methodenkompetenz sowie soziale und persönliche Kompetenzen werden je nach gewählten Teilfächern unterschiedlich betont.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit wird durch das gewählte Fach bestimmt.

Grundlagen der ersten zwei Semester KI-B sind erforderlich, da die Kurse weiterführend zum regulären Curriculum sind. Die Kompetenzen aus KI-B 1-18 werden empfohlen.

Inhalt

Die Inhalte werden durch das gewählte Fach bestimmt.

Es findet keine direkte Abstimmung statt, welches FWP Sie belegen möchten.

Wenn Sie ein FWP aus dem unten genannten Fächerkatalog wählen, schreiben Sie einfach den entsprechenden Dozenten an und fragen, ob Sie sich mit in die Vorlesung setzen können. Danach besuchen Sie einfach die Vorlesung. Die Absprache mit dem Dozenten ist auf jeden Fall erforderlich und muss vor Beginn des Semesters erfolgen, da manche Module, auch wenn das nicht explizit in der Liste erwähnt wird, nur eine begrenzte Anzahl an Studierenden erlauben.

Wenn Sie ein *anderes Fach Ihres Interesses* für FWP 1 oder 2 belegen möchten, müssen sie sich kurz mit Ihrem Studiengangskoordinator abzustimmen (am besten per Mail), ob das entsprechende Fach als FWP geeignet ist. Zusätzlich müssen sie (wie bei den Katalogfächern) auch noch beim jeweiligen Dozenten anfragen.

Der Fächerkatalog der FWP 1 & 2 findet sich im iLearn Kurs "KI-B-6: FWP", da hier eine zeitnahe Aktualisierung gegeben ist.

Lehr- und Lernmethoden

i.d.R. Blended Learning bzw. seminaristischer Unterricht

Besonderes

Die genaue Prüfungsform (gem. Studien- und Prüfungsordnung schr.P. 90min oder mdl.P. 15min oder PStA) wird mit Ankündigung des Fächerkatalogs im Studienplan angegeben.

Empfohlene Literaturliste

KI-31 Schlüsselqualifikation 5 (Team-Entwicklung und interkulturelle Kommunikation, Unternehmensgründung)

Modul Nr.	KI-31
Modulverantwortliche/r	Prof. Dr. Thomas Geiß
Kursnummer und Kursname	KI-31 Schlüsselqualifikation 5 (Team- Entwicklung und interkulturelle Kommunikation, Unternehmensgründung)
Semester	6
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die Lernergebnisse des Moduls setzen sich folglich aus den beiden Fächer "Team-Entwicklung und interkulturelle Kommunikation" (**Fach A**) und "Unternehmensgründung " (**Fach B**) zusammen.

Fach A

Learning Outcomes of the Module:

Cultural and interdisciplinary differences among international business partners, customers and suppliers often result in tension and misunderstandings in the IT world, specifically for individuals working in modern fields like Artificial Intelligence. Managers and team

members who competently navigate in different cultural and disciplinary environments and teams can contribute substantially to the success of globally active enterprises.

A condition for the acquisition of "intercultural and interdisciplinary competence" is the recognition that one's own actions are influenced by one's own values and norms. Reflecting on one's own cultural and disciplinary background forms the basis for the understanding of other cultures and functions.

In the first part of the course the participants acquire the knowledge they need to explain and understand various cultures and disciplines. Through the study of comparative cultures, they discover the relevance of the cultural framework to management theory and for explaining management and team behavior.

Participants learn how to independently apply the "culture assimilator" technique to broaden their knowledge through a qualitative research project. This involves soliciting international and functional managers and employees and collecting "critical incidents" of cross-cultural and cross-functional business and team interactions, which are then analyzed with the help of theory. Carrying out qualitative interviews with members of foreign cultures und functions further develops the participants' social, cross-functional and intercultural skills.

The second part of the course is conducted as an off-campus intensive "teambuilding and social, interdisciplinary and intercultural competence" training workshop. Here the results of the culture-assimilator research projects are presented through role-playing in situational reenactments. The implications are further clarified through a variety of interaction exercises. For example, simulation of expatriate and cross-functional team situations is used to transfer concrete practical knowledge.

The social, interdisciplinary, and intercultural competence training assists the participants in their ability to reflect on cultural and disciplinary identities, to avoid value judgements in their perception of foreign and functional cultures, to empathize and accept differences as well as to develop additional options for actions international and cross-functional managers and employees can take.

In the context of the learning environment, the students enjoy the opportunity to increase their observation, communication, co-operation, self-reflection, teamwork, and management skills as well as their self-confidence. By working together to solve complex problems and through structured feedback sessions, the participants become sensitized to the roles they assume in group interactions, to the limitations imposed by the German and their own cultures, and to the conditions required for effective team work. The participants learn to influence the co-operation in team positively and learn how to avoid negative team atmospheres.

Fach B

Qualifikationsziele

Die Wichtigkeit einer detaillierten Unternehmensplanung wird durch Beispiele verdeutlicht. Dabei wird für das Thema Existenzgründung sensibilisiert und motiviert.

Den Studierenden wird ferner die Möglichkeit geboten, durch das Erstellen eines individuellen Businessplans im Rahmen eines Gruppenprojektes das vermittelte Wissen anzuwenden, zu trainieren und dadurch die Vorgehensweise, mögliche Probleme und Grenzen der Unternehmensplanung an einem praxisnahen Beispiel nachzuvollziehen. Dieser Kurs vermittelt die 'Startvorrichtung' anhand unternehmerischer Grundlagen, Managementkenntnisse und persönlicher Schlüsselqualifikationen für den Start in das unternehmerische Rennen und sensibilisiert zu Themen der Selbstständigkeit und Existenzgründung. Neben theoretischem Wissen zur Entrepreneurship werden Kenntnisse zur Identifikation von Marktchancen und Geschäftsmodellen vermittelt. Erweiterung praktischer Kenntnisse aus dem Startprozess > von der Idee über das Produkt/ Dienstleistung zum Geschäftsmodell. Das Gruppenprojekt umfasst die Gesamtplanung einer Geschäftsidee von der Ideenfindung, der Informationsbeschaffung bis hin zur Erstellung eines detaillierten Geschäftsplanes. Das Engagement der Teilnehmer und die Gruppendynamik während des Projektes tragen dabei entscheidend zum Lernerfolg bei.

Fachkompetenz

Die Studierenden sind in der Lage, im Rahmen des Ideengenerierung (Design Thinking Prozesses, Where2Play-Methode) iterativ Lösungen für eine Problemstellung zu generieren und zu evaluieren. Sie können aus einem Methodenset auswählen und an geeigneter Stelle Problemstellungen hinterfragen und analysieren. Sie können ihre Ideen in Prototypen umsetzen und diese mit ihren Nutzern testen und evaluieren.

Methodenkompetenz

Die Studierenden sind befähigt, Methoden zu den geeigneten Phasen zuzuordnen und anzuwenden. Die Lernmethoden dazu: Interaktives Seminar, Problem Based Learning, Referate/ Präsentationen zu speziellen Aspekten, Selbstorganisation, Coaching-Sitzungen mit dem Dozenten. Das Ziel, bereits vorhandene Wissen mit zu integrieren und mit hohen Kommunikationsbereitschaft Lösungen zu finden.

Persönliche Kompetenz

Die vorgestellten Konzepte und die Unternehmensbeispiele ermöglichen einen großen Interpretationsraum für mögliche Lösungsalternativen. Jeder Studierende muss eigenständig Strategiemöglichkeiten der Unternehmensführung entwickeln und die Auswirkungen reflektieren. In Form von Gruppenarbeit werden ausgewählte Managementtools vorbereitet und im Rahmen der Lehrveranstaltungen präsentiert. Die Studierenden haben zudem ein StartUp-Mindset, das sie befähigt disruptive Problemstellungen zu erfassen und nutzerzentrierte Lösungen zu entwickeln.

Sozialkompetenz

Die Studierenden verfügen über Diskussionsvermögen, Teamfähigkeit und Kritikfähigkeit. Sie sind in der Lage ihre Stärken in den Entwicklungsprozess und Geschäftsmodelldesign einzubringen und verfügen über ein kreatives Selbstbewusstsein. Durch die Analyse aktueller Unternehmenssituationen in Teamarbeit erfolgt ein vertiefter Austausch über unterschiedliche strategische Konzepte zur Unternehmensführung im Spannungsfeld von finanzieller Wertorientierung und werteorientierter Unternehmensführung. Durch

Heterogenität der Gruppenmeinungen und Standpunkte in diesen Diskussionen wird die Konflikt- und Kritikfähigkeit geschult.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit des Moduls für diesen Studiengang

- Dieses Modul zählt zu den interdisziplinären Schlüsselqualifikationen.

Verwendbarkeit des Moduls für andere Studiengänge

 Diese Modul kann in allen sonstigen technischen, rechtlichen, wirtschaftspsychologischen und betriebswirtschaftlichen Studiengängen verwendet werden, z.B. im Ba. Cyber Security

Zugangs- bzw. empfohlene Voraussetzungen

keine Voraussetzungen.

Inhalt

Fach A

- The following concepts are emphasized in theoretical discussions, research projects and in the practical training workshop:
 - Defining Culture
 - The Characteristics of Culture
 - The Functions of Culture
 - Organizational Culture
 - The Layers and Elements of Culture
 - Comparing Cultures
 - The Impact on the Individual: the "Culture Shock"
 - Cultural Contexts: Hall
 - Culture and the Workplace: Hofstede Practical Aspects of Intercultural Behavior
 - International Human Resource Development
 - Expatriate Management
 - Language and Social Reality
 - Reasons for Cross Cultural Misunderstandings
 - Improving Cross Cultural Cooperation
 - Group dynamics, processes, and structures in groups
 - Roles in groups (roles in tasks and supporting roles)
 - Group leadership
 - Effect of one's actions in groups
 - The "give and take" of feedback

- Self-image and how others see you
- Communication levels (content versus relationship)
- Conditions for successful co-operation
- Cultural influences on teamwork.
- Teambuilding

More topics are to be added based on the actual demand for graduates in this programme, evaluated constantly by qualitative and quantitative research of future employers

Fach B

Der Kurs baut auf den Grundlagen der Unternehmensführung auf und motiviert die Studierenden, ihre Kenntnisse auf konkrete Fallbeispiele der Unternehmensgründung zu übertragen. Dabei kommen analytische Instrumente und Lösungsansätze aus der Entrepreneurshipforschung und verschiedenen unternehmerischen Funktionen zum Einsatz. Ferner werden die unternehmerischen Entscheidungswege und die Konsequenzen unternehmerischen Handelns mit Fokus auf Unternehmen diverser Branchen aufgezeigt.

- Gründungsrelevante Kompetenzen
- Ideenfindung und Evaluation von Geschäftsideen
- Aufbau und Inhalte von Businessplänen
- Geschäftsmodelle
- Venture Capital und Unternehmensfinanzierung
- Finanzplanung, Szenariobildung und Sensitivitätsanalyse
- Investitionsplanung und Anlagespiegel
- Personalplanung
- öffentliche Fördermittel
- Möglichkeiten der Haftungsbegrenzung
- Gründerhaftung
- Praktische Anwendung des theoretischen Wissen bei der Erstellung eines Businessplanes als Gruppenprojekt

Lehr- und Lernmethoden

Fach A:

The course begins by conveying the fundamentals of cross-cultural and interdisciplinary management as well as teambuilding via theoretical lectures and moderated discussions. Since most of the participants have teamwork, intercultural and interdisciplinary experiences assembled from a wide variety of cultures and functions, the theory can be directly tied to many of the individual experiences.

The theoretical fundamentals are then extended through the development, application and presentation of the culture and functional assimilators. The qualitative research projects are performed in groups organized along the principles of self-organized learning. The

projects help develop individual competence in applying the scientific method and further the development of presentation, social and intercultural skills.

Short case studies, "critical incidents", are selected from the international and interdisciplinary business world. Explanations and analysis of these cases support the integration of the participants' existing management knowledge with intercultural and interdisciplinary perspectives.

Social, interdisciplinary and intercultural skills as well as teambuilding capabilities are further developed in the training workshop through roll playing, interaction exercises, problem solving tasks, simulations and feedback rounds.

Fach B:

Vorlesung mit Übungen, Seminar, Schreibwerkstatt, Präsentationen, Diskussionen, Vermittlung der Grundlagen durch fallbezogene Darstellung. Systematische Darstellung der Theorie mit Methodentransfer, Schaubildern und Fallbeispielen.

Besonderes

Fach A:

Led by Prof. Dr. Johann Nagengast, the course implements a multi-cultural and multi-functional team teaching approach.

Mr. Florian Oberhofer offers expertise in expatriate management, global entrepreneurship and international human resources and add a foreign cultural and management perspective.

Various external tutors (carefully selected and already being experienced in the content of this module) assure that the participants get small group, qualified feedback.

Kurs wird stets von zwei Dozenten durchgeführt, um die individuelle Betreuung der TN sicher zustellen. Bei höherer Teilnehmerzahl wird evtl. ein dritten Dozent hinzugezogen, in Abstimmung mit dem jeweiligen Studiengangsleiter

Empfohlene Literaturliste

Fach A

- Hall, E. T., Hall, M. R.: Understanding Cultural Differences, reprint, Yarmouth, Intercultural Press (2015)
- Hofstede, G.: Cultures and Organizations, 2nd ed., New York et al., Mc Graw-Hill (2015)
- Hofstede, G.: Culture's Consequences, 2nd ed., Thousand Oaks, Sage, (2014)
- Trompenaars, F., Hampden-Turner, C.: Riding the Waves of Culture, London, Brealey Publishing, (1997)

- Trompenaars, F., Hampden-Turner, C.: Managing People across Cultures, Chichester, Capstone Publishing (2004)
- Lewis, R. D.: When Cultures Collide, 3rd ed. (or more current), London, Brealey Publishing (2006)
- Baron, R. S.: Group Process, Group Decision, Group Action, 2nd. Ed., Buckingham, 2003
- Buchanan, D., Huczynski, A.: Organizational Behavior, 5th Ed., Harlow, 2004

Fach B

- Koch, Wolfgang / Wegmann, Jürgen (2002): Praktiker-Handbuch Due Diligence, Analyse mittelständischer Unternehmen, 2. überarbeitete und aktualisierte Auflage, Schäffer-Poeschel Verlag, Stuttgart 2002.
- Kreditanstalt für Wiederaufbau (KfW)-Akademie, (2004): Finanzierungsmöglichkeiten der KfW bei Unternehmensübernahmen und Beteiligungen, Frankfurt a. M. 2004, S. 32-34.
- Timmons, Jeffrey A.: New venture creation, McGraw-Hill Verlag, Boston, 2004
- Sahlman, William A.: The entrepreneurial venture, Havard Business School Press, Boston, 1999
- Dowling, Michael J.: Gründungsmanagement, Springer Verlag, Berlin, 2003
- Bernd Fischl / Stefan Wagner: Der perfekte Businessplan, 2010 Verlag Franz Vahlen GmbH
- C. Bayerl; 30 Minuten für Kreativitätstechniken; GABAL Verlag GmbH; 3. Auflage 2007; Offenbach
- G. Bayer; G.R. Berrit; Diagnose der Innovationbedingungen im Unternehmen; Digitale Fachbibliothek Innovationsmanagement; Symposium Publishing GmbH; 2007
- A. Blumenschein; I.U. Ehlers; "Ideen managen"; Rosenberger Fachverlag; Leonberg; 2007
- BPW Nordbayern GmbH Schritt für Schritt wachsen finanzieren gründen planen; Teilnehmerhandbuch 2020; 4. überarbeitete Auflage;
- Pott , Oliver, Pott , André : Entrepreneurship, Unternehmensgründung, Businessplan und Finanzierung, Rechtsformen und gewerblicher Rechtsschutz, Poeschl-Verlag, 2017
- A. Förster; P. Kreuz; Different Thinking; Redline Wirtschaft; Frankfurt 2005
- Engelen Andreas: Corporate Entrepreneurship, Taschenbuch, , 2014,
 Gabler.
- Fritsch Michael: Entrepreneurship, Theorie, Empirie, Politik, Engelen, Bachmann, Springer, 2017

KI-32 FWP2

Modul Nr.	KI-32
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-32 FWP2
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	FWP
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In den FWP-Modulen können die Studierenden ein Fach frei aus einem vorgegebenen Fächerkatalog wählen. Die Inhalte sind fachbezogen zum Studium z.B. aus den Themengebieten Informatik, KI, Cyber Security oder sonstige einschlägige Kurse. Dies ermöglicht eine individuelle Schwerpunktsetzung und Vertiefung.

Bei den FWP-Modulen 1 & 2 ist besteht darüber hinaus auch die Möglichkeit *in Absprache mit dem Studiengangskoordinator* fachfremde Fächer aus anderen Fakultäten zu wählen.

Fach- und Methodenkompetenz sowie soziale und persönliche Kompetenzen werden je nach gewählten Teilfächern unterschiedlich betont.

Verwendbarkeit in diesem und in anderen Studiengängen

Verwendbarkeit wird durch das gewählte Fach bestimmt.

Grundlagen der ersten zwei Semester KI-B sind erforderlich, da die Kurse weiterführend zum regulären Curriculum sind. Die Kompetenzen aus KI-B 1-18 werden empfohlen.

Inhalt

Die Inhalte werden durch das gewählte Fach bestimmt.

Es findet keine direkte Abstimmung statt, welches FWP Sie belegen möchten.

Wenn Sie ein FWP aus dem unten genannten Fächerkatalog wählen, schreiben Sie einfach den entsprechenden Dozenten an und fragen, ob Sie sich mit in die Vorlesung setzen können. Danach besuchen Sie einfach die Vorlesung. Die Absprache mit dem Dozenten ist auf jeden Fall erforderlich und muss vor Beginn des Semesters erfolgen, da manche Module, auch wenn das nicht explizit in der Liste erwähnt wird, nur eine begrenzte Anzahl an Studierenden erlauben.

Wenn Sie ein *anderes Fach Ihres Interesses* für FWP 1 oder 2 belegen möchten, müssen sie sich kurz mit Ihrem Studiengangskoordinator abzustimmen (am besten per Mail), ob das entsprechende Fach als FWP geeignet ist. Zusätzlich müssen sie (wie bei den Katalogfächern) auch noch beim jeweiligen Dozenten anfragen.

Der Fächerkatalog der FWP 1 & 2 findet sich im iLearn Kurs "KI-B-6: FWP", da hier eine zeitnahe Aktualisierung gegeben ist.

Lehr- und Lernmethoden

i.d.R. Blended Learning bzw. seminaristischer Unterricht

Besonderes

Die genaue Prüfungsform (gem. Studien- und Prüfungsordnung schr.P. 90min oder mdl.P. 15min oder PStA) wird mit Ankündigung des Fächerkatalogs im Studienplan angegeben.

Empfohlene Literaturliste

KI-33 FWP3

Modul Nr.	KI-33
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-33 FWP3
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	FWP
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In den FWP-Modulen können die Studierenden ein Fach frei aus einem vorgegebenen Fächerkatalog wählen. Die Inhalte der FWP 3 & 4 Module sind fachbezogen aus dem Themengebiet der KI-Anwendungen. Dies ermöglicht eine individuelle Schwerpunktsetzung und Vertiefung.

Fach- und Methodenkompetenz sowie soziale und persönliche Kompetenzen werden je nach gewählten Teilfächern unterschiedlich betont.

Verwendbarkeit in diesem und in anderen Studiengängen

Die Verwendbarkeit hängt von den gewählten Modulen ab.

Notwendig: Grundlagenkompetenzen der ersten zwei Semester. Empfohlen: Kompetenzen aus KI-1 - KI-18

Inhalt

Es findet keine direkte Abstimmung statt, welches FWP Sie belegen möchten.

Wenn Sie ein FWP aus dem FWP3/4 Fächerkatalog in iLearn wählen, schreiben Sie einfach den entsprechenden Dozenten an und fragen, ob Sie sich mit in die Vorlesung setzen können. Danach besuchen Sie einfach die Vorlesung. Die Absprache mit dem Dozenten ist auf jeden Fall erforderlich und muss vor Beginn des Semesters erfolgen, da manche Module, auch wenn das nicht explizit in der Liste erwähnt wird, nur eine begrenzte Anzahl an Studierenden erlauben.

FWP 3 und 4 sind (mit der Ausnahme von Anerkennungen durch ein Auslandssemester) auf den angebotenen Fächerkatalog beschränkt.

Der Fächerkatalog der FWP 3 & 4 Module findet sich im iLearn im Kurs "KI-B-6: FWP", da hier eine zeitnahe Aktualisierung gegeben ist

Lehr- und Lernmethoden

Im Regelfall seminaristischer Unterricht oder blended Learning.

Besonderes

Die genaue Prüfungsform richtet sich nach dem gewählten Kurs.

Empfohlene Literaturliste

KI-34 FWP 4

Modul Nr.	KI-34
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-34 FWP 4
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	jährlich
Art der Lehrveranstaltungen	FWP
Niveau	Undergraduate
SWS	4
ECTS	5
Workload	Präsenzzeit: 60 Stunden Selbststudium: 90 Stunden Gesamt: 150 Stunden
Gewichtung der Note	5/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

In den FWP-Modulen können die Studierenden ein Fach frei aus einem vorgegebenen Fächerkatalog wählen. Die Inhalte der FWP 3 & 4 Module sind fachbezogen aus dem Themengebiet der KI-Anwendungen. Dies ermöglicht eine individuelle Schwerpunktsetzung und Vertiefung.

Fach- und Methodenkompetenz sowie soziale und persönliche Kompetenzen werden je nach gewählten Teilfächern unterschiedlich betont.

Verwendbarkeit in diesem und in anderen Studiengängen

Die Verwendbarkeit hängt von den gewählten Modulen ab.

Notwendig: Grundlagenkompetenzen der ersten zwei Semester. Empfohlen: Kompetenzen aus KI-1 - KI-18

Inhalt

Es findet keine direkte Abstimmung statt, welches FWP Sie belegen möchten.

Wenn Sie ein FWP aus dem FWP3/4 Fächerkatalog in iLearn wählen, schreiben Sie einfach den entsprechenden Dozenten an und fragen, ob Sie sich mit in die Vorlesung setzen können. Danach besuchen Sie einfach die Vorlesung. Die Absprache mit dem Dozenten ist auf jeden Fall erforderlich und muss vor Beginn des Semesters erfolgen, da manche Module, auch wenn das nicht explizit in der Liste erwähnt wird, nur eine begrenzte Anzahl an Studierenden erlauben.

FWP 3 und 4 sind (mit der Ausnahme von Anerkennungen durch ein Auslandssemester) auf den angebotenen Fächerkatalog beschränkt.

Der Fächerkatalog der FWP 3 & 4 Module findet sich im iLearn im Kurs "KI-B-6: FWP", da hier eine zeitnahe Aktualisierung gegeben ist

Lehr- und Lernmethoden

Im Regelfall seminaristischer Unterricht oder blended Learning.

Besonderes

Die genaue Prüfungsform richtet sich nach dem gewählten Kurs.

Empfohlene Literaturliste

KI-35 Bachelormodul

Modul Nr.	KI-35
Modulverantwortliche/r	Prof. Dr. Markus Mayer
Kursnummer und Kursname	KI-7101 Bachelorarbeit
	KI-7102 Bachelorseminar
Semester	7
Dauer des Moduls	1 Semester
Häufigkeit des Moduls	nach Bedarf
Art der Lehrveranstaltungen	Pflichtfach
Niveau	Undergraduate
sws	14
ECTS	15
Workload	Präsenzzeit: 30 Stunden
	Selbststudium: 420 Stunden
	Gesamt: 450 Stunden
Gewichtung der Note	15/210
Unterrichts-/Lehrsprache	Deutsch

Qualifikationsziele des Moduls

Die im Studium erworbenen Kenntnisse und Fähigkeiten sollen in einem Projekt aus dem Bereich der Künstlichen Intelligenz methodisch und im Zusammenhang eingesetzt werden. Eine Problemstellung soll innerhalb einer vorgegebenen Frist selbstständig strukturiert werden, nach wissenschaftlichen Methoden systematisch bearbeitet und schließlich transparent dokumentieren werden.

Im abschießenden Vortrag und der Verteidigung der Arbeit im Rahmen des Bachelorseminars soll eine zielgruppengerechte Präsentation des Projektes und der in der Arbeit erzielten Resultate erfolgen.

Verwendbarkeit in diesem und in anderen Studiengängen

KI Bachelor

Formal: Zur Bachelorarbeit kann sich anmelden, wer die Module der Grundlagen- und Orientierungsprüfung erfolgreich absolviert hat und mindestens 120 ECTSLeistungspunkte erreicht hat.

Inhaltlich: Kenntnis und Anwendbarkeit der Studieninhalte

Inhalt

Individuelle Themenstellung

Lehr- und Lernmethoden

Anleitung zu eigenständiger Arbeit nach wissenschaftlichen Methoden

Besonderes

Im dualen Studium wird der Theorie-Praxis-Transfer in diesem Modul dadurch gewährleistet, das die Themenstellung der Bachelorarbeit in der Regel aus dem Betrieb kommt und der praktische Teil der Bachelorarbeit auch im Betrieb durchgeführt wird.

Empfohlene Literaturliste

Gemäß Themenstellung

